论文标题
半病态的逻辑II:BETH的确定性和演绎插值
Semiconic Idempotent Logic II: Beth Definability and Deductive Interpolation
论文作者
论文摘要
半病态的逻辑SCI是直觉逻辑,半掌握逻辑SLI的常见概括,特别是与Mingle的相关性逻辑。我们为SCI的许多扩展设置了投影性Beth的可确定性属性和扣除插值属性,并确定这些属性失败的扩展。我们通过研究相应代数语义的(强)融合特性和表达性释放性特性来实现这些结果。半毒物残留的晶格。我们的研究通过前传中实现的圆锥体模型的结构分解,以及对这种分解中用作索引集的IDEMPOTENT残留链的结构进行详细分析。在这里,我们研究后者两个级别:作为某些富集的Galois连接,并作为增强的单体预订。使用此过程,我们表明,尽管圆锥体的残留晶格没有合并特性,但天然的刚性和结合性的圆锥型型残留的晶格具有很强的合并性能,因此具有圆形的表达性。这扩展到由刚性和结合性的圆锥型残留的晶格产生的品种,我们为几个重要的亚体型建立了(强)融合和表达性止血性特性。使用SCI的代数性,这得出了相应的子结构逻辑扩展SCI的扣除插值属性和投影性的Beth可确定性属性。
Semiconic idempotent logic sCI is a common generalization of intuitionistic logic, semilinear idempotent logic sLI, and in particular relevance logic with mingle. We establish the projective Beth definability property and the deductive interpolation property for many extensions of sCI, and identify extensions where these properties fail. We achieve these results by studying the (strong) amalgamation property and the epimorphism-surjectivity property for the corresponding algebraic semantics, viz. semiconic idempotent residuated lattices. Our study is made possible by the structural decomposition of conic idempotent models achieved in the prequel, as well as a detailed analysis of the structure of idempotent residuated chains serving as index sets in this decomposition. Here we study the latter on two levels: as certain enriched Galois connections and as enhanced monoidal preorders. Using this, we show that although conic idempotent residuated lattices do not have the amalgamation property, the natural class of rigid and conjunctive conic idempotent residuated lattices has the strong amalgamation property, and thus has surjective epimorphisms. This extends to the variety generated by rigid and conjunctive conic idempotent residuated lattices, and we establish the (strong) amalgamation and epimorphism-surjectivity properties for several important subvarieties. Using the algebraizability of sCI, this yields the deductive interpolation property and the projective Beth definability property for the corresponding substructural logics extending sCI.