论文标题

个人公平性在二手匹配中各种群体公平概念下 - 一个近似它们的框架

Individual Fairness under Varied Notions of Group Fairness in Bipartite Matching - One Framework to Approximate Them All

论文作者

Panda, Atasi, Louis, Anand, Nimbhorkar, Prajakta

论文摘要

我们研究项目对满足团体和个人公平限制的平台的概率分配。每个项目属于特定组,并且比平台有偏好排序。每个平台通过限制可以分配给它的每组的项目数来实现组公平性。可能有多种最佳解决方案可以满足群体公平的约束,但仅此而已就忽略了项目偏好。我们的方法探索了“两全其美的公平”解决方案,以获得随机匹配,这是前一个单独公平和前群体的群体。因此,我们在``group-fair''匹配中寻求“概率单独公平”的分布,其中每个项目都有与其最佳选择之一匹配的“高”概率。该分布也是前群体的。用户可以自定义公平限制以适合其需求。我们的第一个结果是一种多项式时间算法,该算法计算在“组 - fair”匹配中的分布,从而使单个公平性约束近似满足,并且匹配的预期大小接近OPT。我们在现实世界数据集上进行经验测试。我们提出了另外两种多项式时间双标准近似算法,用户可以选择这些算法,以平衡群体公平和个人公平性权衡。 对于脱节组,我们提供了一种精确的多项式时间算法,适用于其他较低的“组公平”边界。扩展我们的模型,我们涵盖了“ Maxmin群体公平”,扩大代表性不足的群体和“ Mindom群体公平性”,“减少主导群体的代表”。

We study the probabilistic assignment of items to platforms that satisfies both group and individual fairness constraints. Each item belongs to specific groups and has a preference ordering over platforms. Each platform enforces group fairness by limiting the number of items per group that can be assigned to it. There could be multiple optimal solutions that satisfy the group fairness constraints, but this alone ignores item preferences. Our approach explores a `best of both worlds fairness' solution to get a randomized matching, which is ex-ante individually fair and ex-post group-fair. Thus, we seek a `probabilistic individually fair' distribution over `group-fair' matchings where each item has a `high' probability of matching to one of its top choices. This distribution is also ex-ante group-fair. Users can customize fairness constraints to suit their requirements. Our first result is a polynomial-time algorithm that computes a distribution over `group-fair' matchings such that the individual fairness constraints are approximately satisfied and the expected size of a matching is close to OPT. We empirically test this on real-world datasets. We present two additional polynomial-time bi-criteria approximation algorithms that users can choose from to balance group fairness and individual fairness trade-offs. For disjoint groups, we provide an exact polynomial-time algorithm adaptable to additional lower `group fairness' bounds. Extending our model, we encompass `maxmin group fairness,' amplifying underrepresented groups, and `mindom group fairness,' reducing the representation of dominant groups.'

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源