论文标题

非相同机械振荡器之间远程纠缠的非偏置增强

Nonreciprocal enhancement of remote entanglement between nonidentical mechanical oscillators

论文作者

Jiao, Ya-Feng, Liu, Jing-Xue, Li, Ying, Yang, Ronghua, Kuang, Le-Man, Jing, Hui

论文摘要

由于其在分布式量子信息处理中的潜在应用,远距离机械振荡器之间的纠缠在支持量子的设备中尤其引起了人们的关注。在这里,我们建议如何在级联的光学机械配置中实现两个空间分离的机械振荡器之间的非临界远程纠缠,其中两个光力学共振器通过电信纤维间接耦合。我们表明,通过选择性地旋转光学谐振器,可以通过SAGNAC效应打破该化合物系统的时间逆向对称性,并更加激动地通过每个光学机电谐音器中的光动作相互作用的单个优化来增强机械振荡器之间的间接耦合。这种能力使我们能够在远处的机械振荡器之间生成和操纵非偏置纠缠,也就是说,只有通过从一个特定的输入方向驱动系统而不是另一个方向才能实现纠缠。此外,在两个频率不匹配的机械振荡器的情况下,还发现,与其相互的对应物相比,生成的非交流纠缠的程度是违反直觉的,在静态的cascaded Systems中,具有单调驱动激光器。我们的工作很好地属于当前实验能力的可行性,为探索遥远的巨大物体之间的非经典相关性提供了诱人的机会,并促进了从量子信息处理到量子传感的各种新兴量子技术。

Entanglement between distant massive mechanical oscillators is of particular interest in quantum-enabled devices due to its potential applications in distributed quantum information processing. Here we propose how to achieve nonreciprocal remote entanglement between two spatially separated mechanical oscillators within a cascaded optomechanical configuration, where the two optomechanical resonators are indirectly coupled through a telecommunication fiber. We show that by selectively spinning the optomechanical resonators, one can break the time reversal symmetry of this compound system via Sagnac effect, and more excitingly, enhance the indirect couplings between the mechanical oscillators via the individual optimizations of light-motion interaction in each optomechanical resonator. This ability allows us to generate and manipulate nonreciprocal entanglement between distant mechanical oscillators, that is, the entanglement could be achieved only through driving the system from one specific input direction but not the other. Moreover, in the case of two frequency-mismatched mechanical oscillators, it is also found that the degree of the generated nonreciprocal entanglement is counterintuitively enhanced in comparison with its reciprocal counterparts, which are otherwise unattainable in static cascaded systems with a single-tone driving laser. Our work, which is well within the feasibility of current experimental capabilities, provides an enticing new opportunity to explore the nonclassical correlations between distant massive objects and facilitates a variety of emerging quantum technologies ranging from quantum information processing to quantum sensing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源