论文标题
参考限制的零拍学习
Reference-Limited Compositional Zero-Shot Learning
论文作者
论文摘要
组成零射击学习(CZSL)是指认识到已知视觉原始的看不见的组成,这是人工智能系统学习和理解世界的重要能力。尽管在现有基准测试方面取得了长足的进步,但我们怀疑流行的CZSL方法是否可以解决几乎没有射击的挑战,几乎没有参考构图,这在现实世界中看不见的环境中学习时很常见。为此,我们研究了本文中具有挑战性的参考有限的零拍学习(RL-CZSL)问题,即,应确定只有几个样品作为参考的有限的参考组成,应确定观察到的原始物的参考。我们提出了一种新型的元组合图学习器(metaCGL),该图可以从不足的参考信息中有效地学习组成性并推广到看不见的组成。此外,我们通过两个新的大规模数据集构建了一个基准测试,这些数据集由具有不同组成标签的自然图像组成,为RL-CZSL提供了更现实的环境。基准中的广泛实验表明,当参考文献受到构成学习的限制时,我们的方法在识别看不见的成分方面取得了最新的性能。
Compositional zero-shot learning (CZSL) refers to recognizing unseen compositions of known visual primitives, which is an essential ability for artificial intelligence systems to learn and understand the world. While considerable progress has been made on existing benchmarks, we suspect whether popular CZSL methods can address the challenges of few-shot and few referential compositions, which is common when learning in real-world unseen environments. To this end, we study the challenging reference-limited compositional zero-shot learning (RL-CZSL) problem in this paper, i.e., given limited seen compositions that contain only a few samples as reference, unseen compositions of observed primitives should be identified. We propose a novel Meta Compositional Graph Learner (MetaCGL) that can efficiently learn the compositionality from insufficient referential information and generalize to unseen compositions. Besides, we build a benchmark with two new large-scale datasets that consist of natural images with diverse compositional labels, providing more realistic environments for RL-CZSL. Extensive experiments in the benchmarks show that our method achieves state-of-the-art performance in recognizing unseen compositions when reference is limited for compositional learning.