论文标题

Meromorthic函数的Cochain复合物扩展到繁殖

The extension of cochain complexes of meromorphic functions to multiplications

论文作者

Levin, Daniel, Zuevsky, Alexander

论文摘要

令$ \ mathfrak g $为无限的谎言代数,$ g $是其模块的代数完成。在缝制两个带有许多标记点的Riemann Spher方面,我们使用几何解释,我们在两个空间的元素$ \ Mathcal {M}^K_M(\ Mathfrak G,G,G,G)$和$ \ Mathcal {M}^N_}^N_ {M'}(M Mathfak g,g,g,g,g)$ confimition中引入乘法。参数$(x_1,\ ldots,x_k)$和$(y_1,\ ldots,y_n)$具有特定的分析和对称属性,并且与$ \ Mathfrak g $可值系列相关。这些空间相对于边界 - 探手算子形成了链链络合物。本文的主要结果表明,乘法是由绝对融合的序列定义的,并在空间中取值$ \ mathcal {m}^{k+n} _ {m+m'}(\ mathfrak g,g,g)$。

Let $\mathfrak g$ be an infinite-dimensional Lie algebra and $G$ be the algebraic completion of its module. Using a geometric interpretation in terms of sewing two Riemann spheres with a number of marked points, we introduce a multiplication between elements of two spaces $\mathcal{M}^k_m(\mathfrak g, G)$ and $\mathcal{M}^n_{m'}(\mathfrak g, G)$ of meromorphic functions depending on a number of formal complex parameters $(x_1, \ldots, x_k)$ and $(y_1, \ldots, y_n)$ with specific analytic and symmetry properties, and associated to $\mathfrak g$-valued series. These spaces form a chain-cochain complex with respect to a boundary-coboundary operator. The main result of the paper shows that the multiplication is defined by an absolutely convergent series and takes values in the space $\mathcal{M}^{k+n}_{m+m'}(\mathfrak g, G)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源