论文标题
炸玉米饼:通过对比度学习的文本属性识别
TaCo: Textual Attribute Recognition via Contrastive Learning
论文作者
论文摘要
由于字体之类的文本属性是文档格式和页面样式的核心设计元素,因此自动属性识别有利于全面的实用应用。现有方法在区分不同属性方面已经产生令人满意的性能,但是它们仍然遭受区分类似属性的痛苦,只有微妙的差异。此外,在现实情况下,出现意外和明显的成像扭曲的现实情况下,它们的性能严重下降。在本文中,我们旨在通过提出炸玉米饼来解决这些问题,炸玉米饼是针对最常见文档场景量身定制的文本属性识别的对比框架。具体而言,炸玉米饼利用对比的学习来消除由模糊和开放式属性引起的歧义陷阱。为了实现这一目标,我们从三个角度设计了学习范式:1)生成属性视图,2)提取微妙但至关重要的细节,以及3)利用有价值的视图对学习,以充分解锁预训练潜力。广泛的实验表明,炸玉米饼超过了被监督的对应物,并在多个属性识别任务上取得了最新的进步。将提供炸玉米饼的在线服务。
As textual attributes like font are core design elements of document format and page style, automatic attributes recognition favor comprehensive practical applications. Existing approaches already yield satisfactory performance in differentiating disparate attributes, but they still suffer in distinguishing similar attributes with only subtle difference. Moreover, their performance drop severely in real-world scenarios where unexpected and obvious imaging distortions appear. In this paper, we aim to tackle these problems by proposing TaCo, a contrastive framework for textual attribute recognition tailored toward the most common document scenes. Specifically, TaCo leverages contrastive learning to dispel the ambiguity trap arising from vague and open-ended attributes. To realize this goal, we design the learning paradigm from three perspectives: 1) generating attribute views, 2) extracting subtle but crucial details, and 3) exploiting valued view pairs for learning, to fully unlock the pre-training potential. Extensive experiments show that TaCo surpasses the supervised counterparts and advances the state-of-the-art remarkably on multiple attribute recognition tasks. Online services of TaCo will be made available.