论文标题

Banach空间中可矫正曲线的子集II:几乎平坦弧的通用估计值

Subsets of rectifiable curves in Banach spaces II: universal estimates for almost flat arcs

论文作者

Badger, Matthew, McCurdy, Sean

论文摘要

我们证明,在任何BANACH空间中,可矫正曲线类似于两个或多个直线段的窗户集量很小,而常数则独立于曲线,空间的尺寸和规范的选择。与第一部分一起,这完成了分析师的旅行推销员定理的必要一半的证明,并在均匀凸出的空间中具有敏锐的指数。

We prove that in any Banach space the set of windows in which a rectifiable curve resembles two or more straight line segments is quantitatively small with constants that are independent of the curve, the dimension of the space, and the choice of norm. Together with Part I, this completes the proof of the necessary half of the Analyst's Traveling Salesman theorem with sharp exponent in uniformly convex spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源