论文标题
利用数据驱动的单渠道源分离的环固化信号的时间结构
Exploiting Temporal Structures of Cyclostationary Signals for Data-Driven Single-Channel Source Separation
论文作者
论文摘要
我们研究了单通道源分离(SCSS)的问题,并专注于循环信号,这些信号特别适用于各种应用领域。与经典的SCSS方法不同,我们考虑了一个仅可用的示例而不是模型的设置,从而激发了数据驱动的方法。对于具有基本环化高斯成分的源模型,我们为任何基于模型或数据驱动的分离方法建立了可实现的均方误差(MSE)的下限。我们的分析进一步揭示了最佳分离和相关实施挑战的操作。作为一种计算吸引力的替代方案,我们建议使用U-NET体系结构进行深度学习方法,该架构与最低MSE估计器具有竞争力。我们在模拟中证明,有了合适的域信息结构选择,我们的U-NET方法可以通过大幅减少的计算负担来达到最佳性能。
We study the problem of single-channel source separation (SCSS), and focus on cyclostationary signals, which are particularly suitable in a variety of application domains. Unlike classical SCSS approaches, we consider a setting where only examples of the sources are available rather than their models, inspiring a data-driven approach. For source models with underlying cyclostationary Gaussian constituents, we establish a lower bound on the attainable mean squared error (MSE) for any separation method, model-based or data-driven. Our analysis further reveals the operation for optimal separation and the associated implementation challenges. As a computationally attractive alternative, we propose a deep learning approach using a U-Net architecture, which is competitive with the minimum MSE estimator. We demonstrate in simulation that, with suitable domain-informed architectural choices, our U-Net method can approach the optimal performance with substantially reduced computational burden.