论文标题

单细胞分辨率的免疫调节药物反应的治疗代数

Therapeutic algebra of immunomodulatory drug responses at single-cell resolution

论文作者

Jiang, Jialong, Chen, Sisi, Tsou, Tiffany, McGinnis, Christopher S., Khazaei, Tahmineh, Zhu, Qin, Park, Jong H., Rivaud, Paul, Strazhnik, Inna-Marie, Chow, Eric D., Sivak, David A., Gartner, Zev J., Thomson, Matt

论文摘要

免疫状态的治疗调节是治疗人类疾病的核心。但是,在转录组量表上,药物和药物组合如何影响人类免疫系统中的各种细胞类型。在这里,我们应用单细胞mRNA-seq来介绍人类免疫细胞对502个免疫调节药物的反应,并组合组合。我们开发了一个统一的数学模型,该模型通过单个推断的调节网络定量地描述了髓样和淋巴样细胞类型对单个药物和药物组合的转录组尺度响应。数学模型揭示了药物组合如何通过添加剂和非加性药物相互作用募集基因表达程序的组合来产生新颖,巨噬细胞和T细胞状态。简化的药物反应代数使我们能够通过联合药物剂量滴定来预测激活,静止和过度抑制态之间免疫细胞种群的连续调节。我们的结果表明,转录组规模的数学模型可以实现使用治疗剂组合来编程人免疫系统的治疗策略。

Therapeutic modulation of immune states is central to the treatment of human disease. However, how drugs and drug combinations impact the diverse cell types in the human immune system remains poorly understood at the transcriptome scale. Here, we apply single-cell mRNA-seq to profile the response of human immune cells to 502 immunomodulatory drugs alone and in combination. We develop a unified mathematical model that quantitatively describes the transcriptome scale response of myeloid and lymphoid cell types to individual drugs and drug combinations through a single inferred regulatory network. The mathematical model reveals how drug combinations generate novel, macrophage and T-cell states by recruiting combinations of gene expression programs through both additive and non-additive drug interactions. A simplified drug response algebra allows us to predict the continuous modulation of immune cell populations between activated, resting and hyper-inhibited states through combinatorial drug dose titrations. Our results suggest that transcriptome-scale mathematical models could enable the design of therapeutic strategies for programming the human immune system using combinations of therapeutics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源