论文标题

结构正规化的专注网络,用于自动股头坏死诊断和定位

Structure Regularized Attentive Network for Automatic Femoral Head Necrosis Diagnosis and Localization

论文作者

Li, Lingfeng, Cong, Huaiwei, Zhao, Gangming, Peng, Junran, Zhang, Zheng, Li, Jinpeng

论文摘要

近年来,几项作品采用了卷积神经网络(CNN)来诊断基于X射线图像或磁共振成像(MRI)的股骨头(AVNFH)的无血管坏死。但是,由于组织重叠,X射线图像很难为早期诊断提供细粒度。另一方面,MRI的成像时间很长,更昂贵,使其在大规模筛查中不切实际。计算机断层扫描(CT)显示了层组织,图像速度更快,并且比MRI成本较小。但是,据我们所知,对AVNFH的基于CT的自动诊断没有工作。在这项工作中,我们收集并标记为AVNFH排名的大型数据集。此外,现有的端到端CNN仅产生分类结果,并且很难为诊断中的医生提供更多信息。为了解决这个问题,我们提出了结构正规化的专注网络(Sranet),该网络能够根据贴剂的注意在分类过程中突出坏死区域。 Sranet提取物在图像块中的特征,通过注意机制获得重量以汇总特征,并通过具有先验知识的结构正常化程序来限制它们以改善概括。 Sranet在我们的AVNFH-CT数据集上进行了评估。实验结果表明,Sranet优于CNN,用于AVNFH分类,此外,它可以定位病变并提供更多信息以帮助医生进行诊断。我们的代码在https://github.com/tomas-lilingfeng/sranet上公开。

In recent years, several works have adopted the convolutional neural network (CNN) to diagnose the avascular necrosis of the femoral head (AVNFH) based on X-ray images or magnetic resonance imaging (MRI). However, due to the tissue overlap, X-ray images are difficult to provide fine-grained features for early diagnosis. MRI, on the other hand, has a long imaging time, is more expensive, making it impractical in mass screening. Computed tomography (CT) shows layer-wise tissues, is faster to image, and is less costly than MRI. However, to our knowledge, there is no work on CT-based automated diagnosis of AVNFH. In this work, we collected and labeled a large-scale dataset for AVNFH ranking. In addition, existing end-to-end CNNs only yields the classification result and are difficult to provide more information for doctors in diagnosis. To address this issue, we propose the structure regularized attentive network (SRANet), which is able to highlight the necrotic regions during classification based on patch attention. SRANet extracts features in chunks of images, obtains weight via the attention mechanism to aggregate the features, and constrains them by a structural regularizer with prior knowledge to improve the generalization. SRANet was evaluated on our AVNFH-CT dataset. Experimental results show that SRANet is superior to CNNs for AVNFH classification, moreover, it can localize lesions and provide more information to assist doctors in diagnosis. Our codes are made public at https://github.com/tomas-lilingfeng/SRANet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源