论文标题

最小的平均等待时间的移动机器人继电器操作的优化

Optimization of Mobile Robotic Relay Operation for Minimal Average Wait Time

论文作者

Hurst, Winston, Mostofi, Yasamin

论文摘要

本文考虑了一个移动机器人的轨迹计划,该机器人持续传达数据之间的数据。数据在每个源处积聚,机器人必须移动到适当的位置以使数据卸载到相应的目的地。机器人需要最大程度地减少数据在维修之前在源等待的平均时间。我们有兴趣找到由1)位置组成的最佳机器人路由策略,该位置在该位置停止继电器(继电器位置)和2)确定对配对的序列的条件过渡概率。我们首先将这个问题作为一个非凸面问题,可在继电器位置和过渡概率上进行优化。为了找到近似解决方案,我们提出了一种新型算法,该算法交替优化继电器位置和过渡概率。对于前者,我们找到了非凸vex继电器区域的有效凸线分区,然后制定混合校准二阶锥体问题。对于后者,我们通过顺序最小二乘编程找到了最佳的过渡概率。我们广泛地分析了所提出的方法,并在数学上表征了与机器人的长期能耗和服务率有关的重要系统属性。最后,通过使用真实的通道参数进行广泛的模拟,我们验证了方法的功效。

This paper considers trajectory planning for a mobile robot which persistently relays data between pairs of far-away communication nodes. Data accumulates stochastically at each source, and the robot must move to appropriate positions to enable data offload to the corresponding destination. The robot needs to minimize the average time that data waits at a source before being serviced. We are interested in finding optimal robotic routing policies consisting of 1) locations where the robot stops to relay (relay positions) and 2) conditional transition probabilities that determine the sequence in which the pairs are serviced. We first pose this problem as a non-convex problem that optimizes over both relay positions and transition probabilities. To find approximate solutions, we propose a novel algorithm which alternately optimizes relay positions and transition probabilities. For the former, we find efficient convex partitions of the non-convex relay regions, then formulate a mixed-integer second-order cone problem. For the latter, we find optimal transition probabilities via sequential least squares programming. We extensively analyze the proposed approach and mathematically characterize important system properties related to the robot's long-term energy consumption and service rate. Finally, through extensive simulation with real channel parameters, we verify the efficacy of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源