论文标题
通过基于投票的多任务学习,八八图中的视网膜结构检测
Retinal Structure Detection in OCTA Image via Voting-based Multi-task Learning
论文作者
论文摘要
自动检测视网膜结构,例如视网膜血管(RV),凹起的血管区(FAZ)和视网膜血管连接(RVJ),对于理解眼睛和临床决策的疾病非常重要。在本文中,我们提出了一种新型的基于投票的自适应特征融合多任务网络(VAFF-NET),用于在光学相干性层析成像(OCTA)中对RV,FAZ和RVJ进行联合分割,检测和分类。提出了一个特定于任务的投票门模块,以适应两个级别的特定任务的不同特征:来自单个编码器的不同空间位置的特征,以及来自多个编码器的功能。特别是,由于八八张图像中微脉管系统的复杂性使视网膜血管连接连接到分叉/跨越具有挑战性的任务使其同时精确定位和分类,因此我们通过结合热图回归和网格分类来专门设计任务头。我们利用来自各种视网膜层的三种不同的\ textit {en face}血管造影,而不是遵循仅使用单个\ textit {en face}的现有方法。为了促进进一步的研究,已发布了这些数据集的一部分数据集,并且已发布了公众访问:https://github.com/imed-lab/vaff-net。
Automated detection of retinal structures, such as retinal vessels (RV), the foveal avascular zone (FAZ), and retinal vascular junctions (RVJ), are of great importance for understanding diseases of the eye and clinical decision-making. In this paper, we propose a novel Voting-based Adaptive Feature Fusion multi-task network (VAFF-Net) for joint segmentation, detection, and classification of RV, FAZ, and RVJ in optical coherence tomography angiography (OCTA). A task-specific voting gate module is proposed to adaptively extract and fuse different features for specific tasks at two levels: features at different spatial positions from a single encoder, and features from multiple encoders. In particular, since the complexity of the microvasculature in OCTA images makes simultaneous precise localization and classification of retinal vascular junctions into bifurcation/crossing a challenging task, we specifically design a task head by combining the heatmap regression and grid classification. We take advantage of three different \textit{en face} angiograms from various retinal layers, rather than following existing methods that use only a single \textit{en face}. To facilitate further research, part of these datasets with the source code and evaluation benchmark have been released for public access:https://github.com/iMED-Lab/VAFF-Net.