论文标题
敏感智能机器人触摸的大规模集成柔性触觉传感器阵列
Large-Scale Integrated Flexible Tactile Sensor Array for Sensitive Smart Robotic Touch
论文作者
论文摘要
在长期追求智能机器人技术的过程中,它已被设想,以使机器人具有类似人类的感官,尤其是视觉和触觉。尽管在过去的几十年中,图像传感器和计算机视觉已经取得了巨大进展,但由于缺乏高灵敏度,高空间分辨率和快速响应的大规模柔性触觉传感器阵列,触觉感觉的能力仍在落后。在这项工作中,我们通过将高性能的压电膜(PRF)与碳nanotube的大区域活性基质集成了碳纳米管薄纤维晶体管的大区域活性基质,证明了64x64柔性触觉传感器阵列,其空间分辨率为0.9 mm(每英寸等效28.2像素)。具有自我形成微观结构的PRF表现出〜385 kPa-1的高压敏度,对于MWCNTS的浓度为6%,而14%的PRF表现出〜3 ms的快速响应时间,良好的线性,良好的线性,广泛的检测范围超过1400 kPa,并且超过3000个环节的良好环保性。使用此完全集成的触觉传感器阵列,清楚地识别了人造蜜蜂的足迹图。此外,我们通过将基于PRF的传感器阵列与基于Memristor的内存芯片计算芯片集成,以记录和识别手写数字和中国书法,从而在硬件中分别实现98.8%和97.3%的高分类精度来记录和识别中国的书法,从而使基于PRF的传感器阵列与基于Memristor的计算芯片进行了硬件。传感器网络与深度学习硬件的集成可以使边缘或近传感器计算大大减少功耗和延迟。我们的工作可以为建立大规模的智能传感器网络铺平道路,用于下一代智能机器人技术。
In the long pursuit of smart robotics, it has been envisioned to empower robots with human-like senses, especially vision and touch. While tremendous progress has been made in image sensors and computer vision over the past decades, the tactile sense abilities are lagging behind due to the lack of large-scale flexible tactile sensor array with high sensitivity, high spatial resolution, and fast response. In this work, we have demonstrated a 64x64 flexible tactile sensor array with a record-high spatial resolution of 0.9 mm (equivalently 28.2 pixels per inch), by integrating a high-performance piezoresistive film (PRF) with a large-area active matrix of carbon nanotube thin-film transistors. PRF with self-formed microstructures exhibited high pressure-sensitivity of ~385 kPa-1 for MWCNTs concentration of 6%, while the 14% one exhibited fast response time of ~3 ms, good linearity, broad detection range beyond 1400 kPa, and excellent cyclability over 3000 cycles. Using this fully integrated tactile sensor array, the footprint maps of an artificial honeybee were clearly identified. Furthermore, we hardware-implemented a smart tactile system by integrating the PRF-based sensor array with a memristor-based computing-in-memory chip to record and recognize handwritten digits and Chinese calligraphy, achieving high classification accuracies of 98.8% and 97.3% in hardware, respectively. The integration of sensor networks with deep learning hardware may enable edge or near-sensor computing with significantly reduced power consumption and latency. Our work could pave the road to building large-scale intelligent sensor networks for next-generation smart robotics.