论文标题
沿着拉格朗日平均曲率流的颈部捏
Neck pinches along the Lagrangian mean curvature flow of surfaces
论文作者
论文摘要
令$ l_t $为零马斯洛夫,在紧凑的calabi-yau表面中有理理性的拉格朗日平均曲率流,并假设在第一个奇异时间时,两个横向平面的静态结合给出了切线。我们表明,在这种情况下,切线流是唯一的,并且可以作为沉浸,光滑,零的Maslov,理性的拉格朗日平均曲率流动而延续奇异性。此外,如果$ l_0 $是托马斯·尤(Thomas-Yau)稳定的球体,那么这种奇异性就无法形成。
Let $L_t$ be a zero Maslov, rational Lagrangian mean curvature flow in a compact Calabi-Yau surface, and suppose that at the first singular time a tangent flow is given by the static union of two transverse planes. We show that in this case the tangent flow is unique, and that the flow can be continued past the singularity as an immersed, smooth, zero Maslov, rational Lagrangian mean curvature flow. Furthermore, if $L_0$ is a sphere that is stable in the sense of Thomas-Yau, then such a singularity cannot form.