论文标题
增强的反对差分进化算法用于多模式优化
Enhanced Opposition Differential Evolution Algorithm for Multimodal Optimization
论文作者
论文摘要
大多数现实世界中的问题本质上都是多模式,由多个最佳值组成。多模式优化定义为找到函数的多个全局和局部最佳(而不是单个解决方案)的过程。它使用户可以根据需要在不同的解决方案之间切换,同时仍保持最佳系统性能。基于经典梯度的方法未能用于优化问题,因为目标函数是不连续的或不可差的。与需要多个重新启动的经典优化技术相比,进化算法(EAS)能够在单个算法运行中以单个算法运行中的多个解决方案找到多个解决方案,以找到不同的解决方案。因此,已经提出了一些EA来解决此类问题。但是,差异进化(DE)算法是一种基于人群的启发式方法,可以解决此类优化问题,并且可以易于实施。多模式优化问题(MMOP)的潜在挑战是有效地搜索功能空间以准确地定位大多数峰。优化问题可能是最大程度地减少或最大化给定的目标函数,我们旨在解决本研究中多模式功能的最大化问题。因此,我们提出了一种称为增强对立差异进化(EODE)算法的算法来求解MMOP。拟议的算法已在IEEE进化计算国会(CEC)2013基准功能上进行了测试,并且与现有的最新方法相比,它取得了竞争成果。
Most of the real-world problems are multimodal in nature that consists of multiple optimum values. Multimodal optimization is defined as the process of finding multiple global and local optima (as opposed to a single solution) of a function. It enables a user to switch between different solutions as per the need while still maintaining the optimal system performance. Classical gradient-based methods fail for optimization problems in which the objective functions are either discontinuous or non-differentiable. Evolutionary Algorithms (EAs) are able to find multiple solutions within a population in a single algorithmic run as compared to classical optimization techniques that need multiple restarts and multiple runs to find different solutions. Hence, several EAs have been proposed to solve such kinds of problems. However, Differential Evolution (DE) algorithm is a population-based heuristic method that can solve such optimization problems, and it is simple to implement. The potential challenge in Multi-Modal Optimization Problems (MMOPs) is to search the function space efficiently to locate most of the peaks accurately. The optimization problem could be to minimize or maximize a given objective function and we aim to solve the maximization problems on multimodal functions in this study. Hence, we have proposed an algorithm known as Enhanced Opposition Differential Evolution (EODE) algorithm to solve the MMOPs. The proposed algorithm has been tested on IEEE Congress on Evolutionary Computation (CEC) 2013 benchmark functions, and it achieves competitive results compared to the existing state-of-the-art approaches.