论文标题

双场理论中有关Ramond-Ramond Spinors和Bispinors的注释

Notes on Ramond-Ramond spinors and bispinors in double field theory

论文作者

Butter, Daniel

论文摘要

双场理论(DFT)的Ramond-ramond领域可以描述为O(d,d)旋转器或O(d-1,1)X O(1,D-1)Bispinor。这两种公式都可能与与IIA或IIB二元框相对应的均匀或奇数场强度的标准多形式扩展有关。旋转方法在​​DFT的(骨孔)公式中是自然的,而双杆菌对于超对称DFT来说是必不可少的。在这些注释中,我们展示了如何使用DFT Vielbein的旋转版本将这两种方法协变,该版本将O(d,d)旋转器扁平化为双杆。我们还详细介绍了偶数和奇数d中的双比诺公式的详细信息,并详细介绍了IIA/IIB/IIA*/IIB*偶性框架之间的区别。

The Ramond-Ramond sector of double field theory (DFT) can be described either as an O(D,D) spinor or an O(D-1,1) x O(1,D-1) bispinor. Both formulations may be related to the standard polyform expansion in terms of even or odd rank field strengths corresponding to IIA or IIB duality frames. The spinor approach is natural in a (bosonic) metric formulation of DFT, while the bispinor is indispensable for supersymmetric DFT. In these notes, we show how these two approaches may be covariantly connected using a spinorial version of the DFT vielbein, which flattens an O(D,D) spinor into a bispinor. We also elaborate on details of the bispinor formulation in both even and odd D and elaborate on the distinction between the IIA/IIB/IIA*/IIB* duality frames.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源