论文标题

当地哈密顿问题的变异量子算法

Variational quantum algorithms for local Hamiltonian problems

论文作者

Uvarov, Alexey

论文摘要

变分量子算法(VQAS)是一种现代的量子算法系列,旨在使用量子计算机解决优化问题。通常,VQA依赖于量子设备和经典优化算法之间的反馈回路。 VQA的吸引力在于它们的多功能性,对噪声的抵抗力以及即使在深度较小的电路中也能够证明某些结果的能力。我们主要关注称为变分量子本索(VQE)的算法,该算法采用Qubit Hamiltonian并返回其近似基态。我们首先介绍有关将VQE应用于两个自旋模型和Hubbard模型的变体的数值发现。接下来,我们通过将量子分类器开发到分区量子数据来简要介绍量子机学习的主题。我们进一步研究了VQA中消失的衍生物的现象,也称为贫瘠的高原现象。我们在衍生物的差异上得出了一个新的下限,这取决于Ansatz电路的因果结构以及进入问题的Pauli分解Hamiltonian的单个术语。在论文的最后一章中,我们提出了有关使用其父母汉密尔顿人实验准备的克利福德国家的忠诚度的结果。

Variational quantum algorithms (VQAs) are a modern family of quantum algorithms designed to solve optimization problems using a quantum computer. Typically VQAs rely on a feedback loop between the quantum device and a classical optimization algorithm. The appeal of VQAs lies in their versatility, resistance to noise, and ability to demonstrate some results even with circuits of small depth. We primarily focus on the algorithm called variational quantum eigensolver (VQE), which takes a qubit Hamiltonian and returns its approximate ground state. We first present our numerical findings regarding VQE applied to two spin models and a variant of the Hubbard model. Next, we briefly touch the topic of quantum machine learning by developing a quantum classifier to partition quantum data. We further study the phenomenon of vanishing derivatives in VQAs, also known as barren plateaus phenomenon. We derive a new lower bound on variance of the derivatives, which depends on the causal structure of the ansatz circuit and the individual terms entering the Pauli decomposition of the problem Hamiltonian. In the final chapter of the thesis, we present our results on bounding the fidelity of experimentally prepared Clifford states using their parent Hamiltonians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源