论文标题
与比例公平限制和多样性限制的匹配的在线算法
Online Algorithms for Matchings with Proportional Fairness Constraints and Diversity Constraints
论文作者
论文摘要
匹配的问题与集团限制和多样性约束有关,例如在分配问题,委员会选择,学校选择等中都有许多应用。此外,在线匹配问题在AD分配中具有许多应用程序和其他电子商务问题,例如数字营销中的产品建议。 我们研究了两个问题,涉及将{\ em项目}分配给{\ em Platforms},其中项目属于各种{\ em groups},具体取决于其属性;一组物品可脱机,平台在线到达。在第一个问题中,我们使用{\ em比例公平约束}研究在线匹配。在这里,应分配每个到达时的平台,其中每个组中的项目分数在指定的范围内,或者不分配任何项目;目标是将项目分配给平台,以最大化分配给平台的项目数量。 在第二个问题中,我们使用{\ em多样性约束}研究在线匹配,即对于每个平台,为每个组指定了绝对下限。到达时的每个平台应分配一组满足这些界限的项目,或者不分配任何项目;目的是最大化匹配的一组平台。我们研究了这些问题的近似算法和硬度结果。我们证明的技术核心是这些问题与超图中的匹配问题之间的新联系。 我们的实验评估表明,我们在现实世界中的算法的性能超过了我们的理论保证。
Matching problems with group-fairness constraints and diversity constraints have numerous applications such as in allocation problems, committee selection, school choice, etc. Moreover, online matching problems have lots of applications in ad allocations and other e-commerce problems like product recommendation in digital marketing. We study two problems involving assigning {\em items} to {\em platforms}, where items belong to various {\em groups} depending on their attributes; the set of items are available offline and the platforms arrive online. In the first problem, we study online matchings with {\em proportional fairness constraints}. Here, each platform on arrival should either be assigned a set of items in which the fraction of items from each group is within specified bounds or be assigned no items; the goal is to assign items to platforms in order to maximize the number of items assigned to platforms. In the second problem, we study online matchings with {\em diversity constraints}, i.e. for each platform, absolute lower bounds are specified for each group. Each platform on arrival should either be assigned a set of items that satisfy these bounds or be assigned no items; the goal is to maximize the set of platforms that get matched. We study approximation algorithms and hardness results for these problems. The technical core of our proofs is a new connection between these problems and the problem of matchings in hypergraphs. Our experimental evaluation shows the performance of our algorithms on real-world and synthetic datasets exceeds our theoretical guarantees.