论文标题

通过可解释的AI增强交叉销售 - 一种来自能源零售的案例

Augmented cross-selling through explainable AI -- a case from energy retailing

论文作者

Haag, Felix, Hopf, Konstantin, Vasconcelos, Pedro Menelau, Staake, Thorsten

论文摘要

机器学习的进步(ML)引起了人们对这项技术支持决策的浓厚兴趣。尽管复杂的ML模型提供的预测通常比传统工具的预测更准确,但这种模型通常会隐藏用户预测背后的推理,这可能导致采用和缺乏洞察力。在这种张力的激励下,研究提出了可解释的人工智能(XAI)技术,这些技术发现了ML发现的模式。尽管ML和XAI都有很高的希望,但几乎没有经验证据表明传统企业的好处。为此,我们分析了220,185家能源零售商的客户的数据,预测具有多达86%正确性(AUC)的交叉购买(AUC),并表明XAI方法的Shap提供了为实际买家提供的解释。我们进一步概述了对信息系统,XAI和关系营销中研究的影响。

The advance of Machine Learning (ML) has led to a strong interest in this technology to support decision making. While complex ML models provide predictions that are often more accurate than those of traditional tools, such models often hide the reasoning behind the prediction from their users, which can lead to lower adoption and lack of insight. Motivated by this tension, research has put forth Explainable Artificial Intelligence (XAI) techniques that uncover patterns discovered by ML. Despite the high hopes in both ML and XAI, there is little empirical evidence of the benefits to traditional businesses. To this end, we analyze data on 220,185 customers of an energy retailer, predict cross-purchases with up to 86% correctness (AUC), and show that the XAI method SHAP provides explanations that hold for actual buyers. We further outline implications for research in information systems, XAI, and relationship marketing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源