论文标题
吸收布莱克韦尔游戏
Absorbing Blackwell Games
论文作者
论文摘要
它在Flesch和Solan(2022)中显示,有一个相当涉及的证据表明,所有具有有限状态和动作空间的两名玩家随机游戏,以及Shift-Invariant Readoffs承认每$ε> 0 $都承认$ε$ equiLibrium。他们的证明也适用于带有可尾能的回报的两人吸收游戏。在本文中,我们通过将最近的数学工具与可吸收游戏的经典工具结合使用,以使用$ε$平衡吸收$ε$平衡的吸收游戏。
It was shown in Flesch and Solan (2022) with a rather involved proof that all two-player stochastic games with finite state and action spaces and shift-invariant payoffs admit an $ε$-equilibrium, for every $ε>0$. Their proof also holds for two-player absorbing games with tail-measurable payoffs. In this paper we provide a simpler proof for the existence of $ε$-equilibrium in two-player absorbing games with tail-measurable payoffs, by combining recent mathematical tools for such payoff functions with classical tools for absorbing games.