论文标题
自动音乐与深度学习和室外数据混合
Automatic music mixing with deep learning and out-of-domain data
论文作者
论文摘要
传统上,音乐混合涉及以干净,单个曲目的形式录制乐器,并使用音频效果和专家知识(例如,混合工程师)将它们融合到最终混合物中。近年来,音乐制作任务的自动化已成为一个新兴领域,基于规则的方法和机器学习方法已被探索。然而,缺乏干燥或干净的仪器记录限制了这种模型的性能,这与专业的人制造混合物相去甚远。我们探索是否可以使用室外数据,例如潮湿或加工的多轨音乐录音,并将其重新利用以训练有监督的深度学习模型,以弥合自动混合质量的当前差距。为了实现这一目标,我们提出了一种新型的数据预处理方法,该方法允许模型执行自动音乐混合。我们还重新设计了一种用于评估音乐混合系统的听力测试方法。我们使用经验丰富的混合工程师作为参与者来验证结果。
Music mixing traditionally involves recording instruments in the form of clean, individual tracks and blending them into a final mixture using audio effects and expert knowledge (e.g., a mixing engineer). The automation of music production tasks has become an emerging field in recent years, where rule-based methods and machine learning approaches have been explored. Nevertheless, the lack of dry or clean instrument recordings limits the performance of such models, which is still far from professional human-made mixes. We explore whether we can use out-of-domain data such as wet or processed multitrack music recordings and repurpose it to train supervised deep learning models that can bridge the current gap in automatic mixing quality. To achieve this we propose a novel data preprocessing method that allows the models to perform automatic music mixing. We also redesigned a listening test method for evaluating music mixing systems. We validate our results through such subjective tests using highly experienced mixing engineers as participants.