论文标题

基于对比的基于学习的预审进可改善糖尿病性视网膜病变分类模型的表示和可转移性

Contrastive learning-based pretraining improves representation and transferability of diabetic retinopathy classification models

论文作者

Alam, Minhaj Nur, Yamashita, Rikiya, Ramesh, Vignav, Prabhune, Tejas, Lim, Jennifer I., Chan, R. V. P., Hallak, Joelle, Leng, Theodore, Rubin, Daniel

论文摘要

基于自我监督的基于学习的预科阶段可以使用小标签的数据集开发出强大而广义的深度学习模型,从而减少了标签生成的负担。本文旨在评估基于CL的预处理对可转介的性能与非转介糖尿病性视网膜病(DR)分类的影响。我们已经开发了一个基于CL的框架,具有神经样式转移(NST)增强,以生成具有更好表示和初始化的模型,以检测颜色底面图像中的DR。我们将CL预估计的模型性能与用成像网重预测的两个最先进的基线模型进行了比较。我们进一步研究了使用标记的训练数据(降至10%)的模型性能,以测试使用小标签数据集训练模型的鲁棒性。该模型在EYEPACS数据集上进行了培训和验证,并根据芝加哥伊利诺伊大学(UIC)的临床数据进行了独立测试。与基线模型相比,我们的CL预处理的基础网络模型具有更高的AUC(CI)值(0.91(0.898至0.930),在UIC数据上为0.80(0.783至0.820)和0.83(0.783至0.820)(0.801至0.853)。在10%标记的培训数据时,在UIC数据集上测试时,基线模型中的FoldusNet AUC为0.81(0.78至0.84),比0.58(0.56至0.64)和0.63(0.56至0.64)和0.63(0.60至0.66)。基于CL的NST进行了明显改善的DL分类性能,有助于模型良好(可从Eyepacs转移到UIC数据),并允许使用小的带注释的数据集进行培训,从而减少临床医生的地面真相注释负担。

Self supervised contrastive learning based pretraining allows development of robust and generalized deep learning models with small, labeled datasets, reducing the burden of label generation. This paper aims to evaluate the effect of CL based pretraining on the performance of referrable vs non referrable diabetic retinopathy (DR) classification. We have developed a CL based framework with neural style transfer (NST) augmentation to produce models with better representations and initializations for the detection of DR in color fundus images. We compare our CL pretrained model performance with two state of the art baseline models pretrained with Imagenet weights. We further investigate the model performance with reduced labeled training data (down to 10 percent) to test the robustness of the model when trained with small, labeled datasets. The model is trained and validated on the EyePACS dataset and tested independently on clinical data from the University of Illinois, Chicago (UIC). Compared to baseline models, our CL pretrained FundusNet model had higher AUC (CI) values (0.91 (0.898 to 0.930) vs 0.80 (0.783 to 0.820) and 0.83 (0.801 to 0.853) on UIC data). At 10 percent labeled training data, the FundusNet AUC was 0.81 (0.78 to 0.84) vs 0.58 (0.56 to 0.64) and 0.63 (0.60 to 0.66) in baseline models, when tested on the UIC dataset. CL based pretraining with NST significantly improves DL classification performance, helps the model generalize well (transferable from EyePACS to UIC data), and allows training with small, annotated datasets, therefore reducing ground truth annotation burden of the clinicians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源