论文标题

部分可观测时空混沌系统的无模型预测

Faithful invariant random subgroups in acylindrically hyperbolic groups

论文作者

Glasner, Yair, Hase, Anton

论文摘要

在Sun和Kechris Quorning的工作的基础上,我们证明每个酰基柔软的双曲线组$ G $都承认了一种弱混合的概率度量保留动作$ g \ curvearrowright(x,x,\ nathcal {b},μ)$,这是忠实的,但本质上是免费的。换句话说,$ g $承认一个弱小的非平凡的忠实国税局。我们还证明,每个非元素双曲线组都接受具有相同特性的特征随机亚组。

Building on work from Sun and Kechris-Quorning, we prove that every acylindrically hyperbolic group $G$ admits a weakly mixing probability measure preserving action $G \curvearrowright (X,\mathcal{B},μ)$ which is faithful but not essentially free. In other words, $G$ admits a weakly mixing nontrivial faithful IRS. We also prove that every non-elementary hyperbolic group admits a characteristic random subgroup with the same properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源