论文标题

Collat​​z地图作为非单一转换

Collatz map as a non-singular transformation

论文作者

Assani, Idris

论文摘要

令$ t $为$ \ n = \ {1,2,3,... \} $ by $ t(n)= \ frac {n} {2} $,如果$ n $均匀,$ t(n)= \ frac {3n+1} {2} {2} $ n $是ODD。考虑动态系统$(\ n,2^{\ n},t,μ)$,其中$μ$是计数量度。此动态系统$(\ n,2^{\ n},t,μ)$具有以下属性。 \ begin {enumerate} \项目存在一个不变的有限度量$γ$,因此所有$ a \ subset \ n. $γ(a)\leqμ(a)$(a)$(a \ subset \n。$ f \ in l^1(μ)中的每个函数$ f \ intem每$ x \ in \ n $ conver to $ f^*(x)$其中$ f^* \ in l^1(μ)。$ \ end end {Enumerate},我们还表明,Collat​​z的猜想等于存在有限的度量$ c $ n,\ n,2^{\ n,\ n,2^{\ n} $ vf = t ocive t ocive the $ n, $ l^1(ν)$带有conerrvative零件$ \ {1,2 \}。$

Let $T$ be the map defined on $\N=\{1,2,3, ...\}$ by $T(n) = \frac{n}{2} $ if $n$ is even and by $T(n) = \frac{3n+1}{2}$ if $n$ is odd. Consider the dynamical system $(\N, 2^{\N}, T,μ)$ where $μ$ is the counting measure. This dynamical system $(\N, 2^{\N}, T, μ)$ has the following properties. \begin{enumerate} \item There exists an invariant finite measure $γ$ such that $γ(A) \leq μ(A) $ for all $A \subset \N.$ \item For each function $f\in L^1(μ)$ the averages $\frac{1}{N} \sum_{n=1}^N f(T^nx)$ converge for every $x\in \N$ to $ f^*(x)$ where $ f^* \in L^1(μ).$ \end{enumerate} We also show that the Collatz conjecture is equivalent to the existence of a finite measure $ν$ on $(\N, 2^{\N})$ making the operator $Vf = f\circ T$ power bounded in $L^1(ν)$ with conserrvative part $\{1,2\}.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源