论文标题
关于具有多个基站的无线系统联合学习的差异隐私
On Differential Privacy for Federated Learning in Wireless Systems with Multiple Base Stations
论文作者
论文摘要
在这项工作中,我们考虑了一个无线系统中的联合学习模型,该模型具有多个基站和间隔间干扰。在学习阶段,我们应用了一个不同的私人方案,将信息从用户传输到其相应的基站。我们通过在其最佳差距上得出上限来显示学习过程的收敛行为。此外,我们定义了一个优化问题,以减少该上限和总隐私泄漏。为了找到此问题的本地最佳解决方案,我们首先提出了一种计划资源块和用户的算法。然后,我们扩展了此方案,以通过优化差异隐私人工噪声来减少总隐私泄漏。我们将这两个程序的解决方案应用于联合学习系统的参数。在这种情况下,我们假设每个用户都配备了分类器。此外,假定通信单元的资源块比用户数量少。仿真结果表明,与随机调度程序相比,我们提出的调度程序提高了预测的平均准确性。此外,其具有噪声优化器的扩展版本大大减少了隐私泄漏的量。
In this work, we consider a federated learning model in a wireless system with multiple base stations and inter-cell interference. We apply a differential private scheme to transmit information from users to their corresponding base station during the learning phase. We show the convergence behavior of the learning process by deriving an upper bound on its optimality gap. Furthermore, we define an optimization problem to reduce this upper bound and the total privacy leakage. To find the locally optimal solutions of this problem, we first propose an algorithm that schedules the resource blocks and users. We then extend this scheme to reduce the total privacy leakage by optimizing the differential privacy artificial noise. We apply the solutions of these two procedures as parameters of a federated learning system. In this setting, we assume that each user is equipped with a classifier. Moreover, the communication cells are assumed to have mostly fewer resource blocks than numbers of users. The simulation results show that our proposed scheduler improves the average accuracy of the predictions compared with a random scheduler. Furthermore, its extended version with noise optimizer significantly reduces the amount of privacy leakage.