论文标题

基于CMOS的区域和功率高效神经元和突触电路,用于时间域模拟峰值神经网络

CMOS-based area-and-power-efficient neuron and synapse circuits for time-domain analog spiking neural networks

论文作者

Chen, Xiangyu, Byambadorj, Zolboo, Yajima, Takeaki, Inoue, Hisashi, Inoue, Isao H., Iizuka, Tetsuya

论文摘要

传统的神经结构倾向于通过类似量(例如电流或电压)进行通信,但是,随着CMOS设备收缩和供应电压降低,电压/电流域模拟电路的动态范围变窄,可用的边缘变小,噪声免疫降低。不仅如此,在常规设计中使用操作放大器(运算放大器)和连续的时间比较器会导致高能量消耗和较大的芯片区域,这将有害于构建尖峰神经网络。鉴于此,我们提出了一种神经结构,用于生成和传输时间域信号,包括神经元模块,突触模块和两个重量模块。提出的神经结构是由MOS晶体管的泄漏电流驱动的,并使用基于逆变器的比较器来实现射击功能,因此与传统设计相比,能够提供更高的能量和面积效率。提出的神经结构是使用TSMC 65 nm CMOS技术制造的。提出的神经元和突触分别占据了127μm^{2}和231μm^{2}的面积,同时达到了毫秒的时间常数。实际的芯片测量表明,所提出的结构以毫秒的时间常数实现了时间信号通信功能,这是迈向人机交互的硬件储层计算的关键步骤。使用所提出的神经结构的行为模型的用于储层计算的尖峰神经网络的仿真结果证明了学习函数。

Conventional neural structures tend to communicate through analog quantities such as currents or voltages, however, as CMOS devices shrink and supply voltages decrease, the dynamic range of voltage/current-domain analog circuits becomes narrower, the available margin becomes smaller, and noise immunity decreases. More than that, the use of operational amplifiers (op-amps) and continuous-time or clocked comparators in conventional designs leads to high energy consumption and large chip area, which would be detrimental to building spiking neural networks. In view of this, we propose a neural structure for generating and transmitting time-domain signals, including a neuron module, a synapse module, and two weight modules. The proposed neural structure is driven by a leakage current of MOS transistors and uses an inverter-based comparator to realize a firing function, thus providing higher energy and area efficiency compared to conventional designs. The proposed neural structure is fabricated using TSMC 65 nm CMOS technology. The proposed neuron and synapse occupy the area of 127 μm^{ 2} and 231 μm^{ 2}, respectively, while achieving millisecond time constants. Actual chip measurements show that the proposed structure implements the temporal signal communication function with millisecond time constants, which is a critical step toward hardware reservoir computing for human-computer interaction. Simulation results of the spiking-neural network for reservoir computing with the behavioral model of the proposed neural structure demonstrate the learning function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源