论文标题

TEP-GNN:使用图神经网络对功能测试的准确执行时间预测

TEP-GNN: Accurate Execution Time Prediction of Functional Tests using Graph Neural Networks

论文作者

Samoaa, Hazem Peter, Longa, Antonio, Mohamad, Mazen, Chehreghani, Morteza Haghir, Leitner, Philipp

论文摘要

在实际执行或基准测试之前预测生产代码的性能是高度挑战的。在本文中,我们提出了一个称为TEP-GNN的预测模型,该模型表明,对于预测单位测试执行时间的特殊情况,高准确性的性能预测是可能的。 Tep-gnn使用FA-asts或流动的ASTS作为基于图的代码表示方法,并使用强大的图形神经网络(GNN)深度学习模型预测测试执行时间。我们基于从项目公共存储库中开采的922个测试文件,使用四个现实生活中的Java开源程序评估TEP-GNN。我们发现我们的方法达到了0.789的较高的Pearson相关性,表现优于基线深度学习模型。但是,我们还发现,训练有素的模型需要更多的工作才能概括地看不见的项目。我们的工作表明,FA-ast和GNN是预测绝对性能值的可行方法,并且是能够在执行前预测任意代码的性能的重要中介步骤。

Predicting the performance of production code prior to actually executing or benchmarking it is known to be highly challenging. In this paper, we propose a predictive model, dubbed TEP-GNN, which demonstrates that high-accuracy performance prediction is possible for the special case of predicting unit test execution times. TEP-GNN uses FA-ASTs, or flow-augmented ASTs, as a graph-based code representation approach, and predicts test execution times using a powerful graph neural network (GNN) deep learning model. We evaluate TEP-GNN using four real-life Java open source programs, based on 922 test files mined from the projects' public repositories. We find that our approach achieves a high Pearson correlation of 0.789, considerable outperforming a baseline deep learning model. However, we also find that more work is needed for trained models to generalize to unseen projects. Our work demonstrates that FA-ASTs and GNNs are a feasible approach for predicting absolute performance values, and serves as an important intermediary step towards being able to predict the performance of arbitrary code prior to execution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源