论文标题
Moishezon多种多样,没有NEF和大型班级
Moishezon manifolds with no nef and big classes
论文作者
论文摘要
We show that a compact complex manifold $X$ has no non-trivial nef $(1,1)$-classes if there is a non-isomorphic bimeromorphic map $f\colon X\dashrightarrow Y$ isomorphic in codimension $1$ to a compact Kähler manifold $Y$ with $h^{1,1}=1$.特别是,存在无限的许多同构类别的平滑紧凑型Moishezon三倍,没有Nef和Big $ $(1,1)$ - 类。这与最近的论文相矛盾(强烈的约旦财产和非亚伯自由团体的自由行动,Proc。Edinb。Math。Soc。,(2022):1--11)。
We show that a compact complex manifold $X$ has no non-trivial nef $(1,1)$-classes if there is a non-isomorphic bimeromorphic map $f\colon X\dashrightarrow Y$ isomorphic in codimension $1$ to a compact Kähler manifold $Y$ with $h^{1,1}=1$. In particular, there exist infinitely many isomorphic classes of smooth compact Moishezon threefolds with no nef and big $(1,1)$-classes. This contradicts a recent paper (Strongly Jordan property and free actions of non-abelian free groups, Proc. Edinb. Math. Soc., (2022): 1--11).