论文标题
扩散易感感染的模型的关键行为
Critical behavior of the diffusive susceptible-infected-recovered model
论文作者
论文摘要
由于其二元性对称性,在晶格上非易感感染的恢复模型的临界行为已得到很好的确立。通过对二维晶格上的扩散变体进行模拟和扩展分析,我们表明,在破坏了这种对称性的同时,对所有试剂的扩散构成了构成奇异的扰动,从而诱导了渐近的独特的动态和平稳行为,并构成了非降低模型。特别是,有效的均方半径指数中的明显跨界行为表明,在一般扩散多种物种反应系统中,慢速交叉行为可能归因于早期多长度尺度和时间表的干扰。
The critical behavior of the non-diffusive susceptible-infected-recovered model on lattices had been well established in virtue of its duality symmetry. By performing simulations and scaling analyses for the diffusive variant on the two-dimensional lattice, we show that diffusion for all agents, while rendering this symmetry destroyed, constitutes a singular perturbation that induces asymptotically distinct dynamical and stationary critical behavior from the non-diffusive model. In particular, the manifested crossover behavior in the effective mean-square radius exponents reveals that slow crossover behavior in general diffusive multi-species reaction systems may be ascribed to the interference of multiple length scales and timescales at early times.