论文标题

评估会话推荐系统:研究的景观

Evaluating Conversational Recommender Systems: A Landscape of Research

论文作者

Jannach, Dietmar

论文摘要

会话推荐系统旨在以直观的方式在其信息搜索和决策过程中进行交互式支持在线用户。随着语音控制设备,自然语言处理和AI的最新进展,近年来,此类系统受到了越来越多的关注。从技术上讲,对话推荐程序通常是复杂的多组分应用程序,通常由多个机器学习模型和自然语言用户界面组成。因此,以整体方式评估这种复杂的系统可能会具有挑战性,因为它需要(i)评估不同学习组件的质量,以及(ii)用户对整个系统的质量感知。因此,通常需要一种混合方法方法,这可能结合了客观(计算)和主观(面向感知的)评估技术。在本文中,我们回顾了对会话推荐系统的常见评估方法,确定可能的局限性,并概述了未来的全面评估实践方向。

Conversational recommender systems aim to interactively support online users in their information search and decision-making processes in an intuitive way. With the latest advances in voice-controlled devices, natural language processing, and AI in general, such systems received increased attention in recent years. Technically, conversational recommenders are usually complex multi-component applications and often consist of multiple machine learning models and a natural language user interface. Evaluating such a complex system in a holistic way can therefore be challenging, as it requires (i) the assessment of the quality of the different learning components, and (ii) the quality perception of the system as a whole by users. Thus, a mixed methods approach is often required, which may combine objective (computational) and subjective (perception-oriented) evaluation techniques. In this paper, we review common evaluation approaches for conversational recommender systems, identify possible limitations, and outline future directions towards more holistic evaluation practices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源