论文标题
有监督的对比度学习,以进行影响建模
Supervised Contrastive Learning for Affect Modelling
论文作者
论文摘要
传统上,将情感建模视为映射可测量的影响表现的过程,从用户输入的多种方式影响标签。该映射通常是通过机器学习过程来推断的。如果相反,人们会训练一般的主题不变表示,而这些表示会影响信息,然后使用此类表示形式来模型影响?在本文中,我们假设影响标签形成了影响表示形式的组成部分,而不仅仅是训练信号,我们探讨了如何采用对比度学习的最新范式来发现一般的高级影响感兴趣的表示形式,以实现建模影响。我们介绍了三种不同的监督对比学习方法,用于考虑影响信息的培训表示。在这项最初的研究中,我们根据来自多种模式的用户信息来测试Recola数据集中唤醒预测的建议方法。结果证明了对比度学习的表示能力及其在提高情感模型准确性方面的效率。除了与端到端的唤醒分类相比,它们具有更高的性能之外,所得的表示是通用和主题不合时式的,因为训练是指在任何多模式语料库中可用的一般影响信息中指导的。
Affect modeling is viewed, traditionally, as the process of mapping measurable affect manifestations from multiple modalities of user input to affect labels. That mapping is usually inferred through end-to-end (manifestation-to-affect) machine learning processes. What if, instead, one trains general, subject-invariant representations that consider affect information and then uses such representations to model affect? In this paper we assume that affect labels form an integral part, and not just the training signal, of an affect representation and we explore how the recent paradigm of contrastive learning can be employed to discover general high-level affect-infused representations for the purpose of modeling affect. We introduce three different supervised contrastive learning approaches for training representations that consider affect information. In this initial study we test the proposed methods for arousal prediction in the RECOLA dataset based on user information from multiple modalities. Results demonstrate the representation capacity of contrastive learning and its efficiency in boosting the accuracy of affect models. Beyond their evidenced higher performance compared to end-to-end arousal classification, the resulting representations are general-purpose and subject-agnostic, as training is guided though general affect information available in any multimodal corpus.