论文标题

不对称粒子 - 安属颗粒方程:第二个量化

Asymmetric particle-antiparticle Dirac equation: second quantization

论文作者

Rigolin, Gustavo

论文摘要

我们构建了与不对称狄拉克场有关的完全相对论量子场理论。这些磁场是不对称狄拉克方程的溶液,这是一种lorentz的协变性方程,其正和“负”频率平面波解决方案的分散关系不再退化。在第二个量化水平上,我们表明这意味着共享相同波数的颗粒和反颗粒具有不同的能量和动量。尽管如此,我们还是通过正确固定定义不对称的狄拉克游离野外密度的相对论不变性的值来证明,我们可以构建一种一致,完全相对论和可恢复性的量子电动力学(QED),这些量子动力学(QED)在经验上等于标准QED。我们讨论了这种非平凡等效性的原因和含义,在定性的情况下探索不对称的狄拉克场可能会导致超出标准模型预测的其他情况。我们猜想,在当今宇宙中物质和反物质之间的不对称性以及对粒子与反特性之间的重力相互作用进行建模的替代方式,对颗粒和反颗粒的能量中的这种非分类可能会导致对物质和反物质之间的不对称性完全相对论的理解。我们完整地说明了如何在不当的Lorentz变换(奇偶校验和时间反转操作)以及电荷共轭操作下进行不对称的狄拉克场以及相应的an灭和创建操作员转换。我们还证明了当前的理论尊重CPT定理。

We build the fully relativistic quantum field theory related to the asymmetric Dirac fields. These fields are solutions of the asymmetric Dirac equation, a Lorentz covariant Dirac-like equation whose positive and "negative" frequency plane wave solutions' dispersion relations are no longer degenerate. At the second quantization level, we show that this implies that particles and antiparticles sharing the same wave number have different energies and momenta. In spite of that, we prove that by properly fixing the values of the relativistic invariants that define the asymmetric Dirac free field Lagrangian density, we can build a consistent, fully relativistic, and renormalizable quantum electrodynamics (QED) that is empirically equivalent to the standard QED. We discuss the reasons and implications of this non-trivial equivalence, exploring qualitatively other scenarios in which the asymmetric Dirac fields may lead to beyond the standard model predictions. We conjecture that this non-degeneracy in the energies for particles and antiparticles may lead to a fully relativistic understanding of the asymmetry between matter and antimatter in the present day universe as well as to an alternative way of modeling the gravitational interaction between a particle and an antiparticle. We give a complete account of how the asymmetric Dirac fields and the corresponding annihilation and creation operators transform under improper Lorentz transformations (parity and time reversal operations) and under the charge conjugation operation. We also prove that the present theory respects the CPT theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源