论文标题

镜头和相机校准的深入感知度量

A Deep Perceptual Measure for Lens and Camera Calibration

论文作者

Hold-Geoffroy, Yannick, Piché-Meunier, Dominique, Sunkavalli, Kalyan, Bazin, Jean-Charles, Rameau, François, Lalonde, Jean-François

论文摘要

从数字艺术到AR和VR体验,图像编辑和合成已经变得无处不在。为了生产精美的复合材料,需要对相机进行几何校准,这可能很乏味,需要进行物理校准目标。代替传统的多图像校准过程,我们建议使用深层卷积神经网络直接从单个图像中直接从单个图像中推断摄像机校准参数,例如音高,滚动,视场和镜头失真。我们使用从大规模全景数据集中自动生成的样品训练该网络,从而在标准`2错误方面产生了竞争精度。但是,我们认为,最小化此类标准误差指标可能并不是许多应用程序的最佳选择。在这项工作中,我们研究了人类对几何相机校准中不准确性的敏感性。为此,我们进行了一项大规模的人类感知研究,我们要求参与者以正确和有偏见的摄像机校准参数判断3D对象的现实主义。基于这项研究,我们为摄像机校准开发了一种新的感知度量,并证明我们的深校准网络在标准指标以及这一新型的感知度量方面都优于先前基于单像的校准方法。最后,我们演示了校准网络用于多种应用程序,包括虚拟对象插入,图像检索和合成。我们的方法的演示可在https://lvsn.github.io/deepcalib上获得。

Image editing and compositing have become ubiquitous in entertainment, from digital art to AR and VR experiences. To produce beautiful composites, the camera needs to be geometrically calibrated, which can be tedious and requires a physical calibration target. In place of the traditional multi-image calibration process, we propose to infer the camera calibration parameters such as pitch, roll, field of view, and lens distortion directly from a single image using a deep convolutional neural network. We train this network using automatically generated samples from a large-scale panorama dataset, yielding competitive accuracy in terms of standard `2 error. However, we argue that minimizing such standard error metrics might not be optimal for many applications. In this work, we investigate human sensitivity to inaccuracies in geometric camera calibration. To this end, we conduct a large-scale human perception study where we ask participants to judge the realism of 3D objects composited with correct and biased camera calibration parameters. Based on this study, we develop a new perceptual measure for camera calibration and demonstrate that our deep calibration network outperforms previous single-image based calibration methods both on standard metrics as well as on this novel perceptual measure. Finally, we demonstrate the use of our calibration network for several applications, including virtual object insertion, image retrieval, and compositing. A demonstration of our approach is available at https://lvsn.github.io/deepcalib .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源