论文标题
在2018年全球尘埃飞舞期间,灰尘颗粒凝结对火星的影响
Impact of the coagulation of dust particles on Mars during the 2018 global dust storm
论文作者
论文摘要
当两个粒子碰撞并粘在一起时,会发生颗粒的凝结。在火星大气中,灰尘凝血会增加有效的粒径,因为小颗粒会增强较大的颗粒。墨菲等。 (1990年)表明,由于低灰尘颗粒的混合比,而火星大气中的灰尘凝结并不重要,而Montmessin等人。 (2002)和Fedorova等。 (2014年)表明,它主要涉及小于0.1 um的粒子半径。然而,在全球尘埃震荡中,即在存在大量小颗粒的情况下,在3D中从未探索过凝血的影响。在这里,我们通过使用NASA AMES MARS全球气候模型(MGCM)来研究此问题,以研究由于凝结而在2018年全球风暴期间灰尘粒径的时间和空间变化以及这些过程对火星气候的总体影响。我们的凝结参数化包括布朗运动,布朗扩散增强和重力收集的影响。我们表明,布朗运动和布朗扩散增强主导了重力收集。在暴风雨期间,凝血的影响很大,与非风暴条件相比,凝血率增加了10倍。由于凝结,有效的颗粒半径可以增加2倍,从而导致高于30 km高度的20k寒冷气氛。总体而言,我们的参数化改善了暴风雨相对于观察的衰减阶段的表示。如果涉及大量亚微米尺寸的颗粒,则该过程在风暴周期之外仍然很重要。在GCM中,有可能将大量的亚微米尺寸的颗粒从表面上抬高而没有大气中的灰尘积聚,从而改善了与某些观测值的一致性,而不会与观察到的色谱柱的不相差不同。
Coagulation of particles occurs when two particles collide and stick together. In the Martian atmosphere, dust coagulation would increase the effective particle size, as small particles accrete to larger particles. Murphy et al. (1990) showed that Brownian coagulation of dust in the Martian atmosphere was not significant, due to the low dust particle mixing ratios, while Montmessin et al. (2002) and Fedorova et al. (2014) showed that it mostly involves particle radii smaller than 0.1 um. However, the effects of coagulation have never been explored in 3D, during a global dust storm, i.e. in presence of larger numbers of small particles. Here we revisit this issue by using the NASA Ames Mars Global Climate Model (MGCM) to investigate the temporal and spatial changes in dust particle sizes during the 2018 global storm due to coagulation and the overall impact of these processes on Mars' climate. Our parameterization for coagulation includes the effect of Brownian motion, Brownian diffusion enhancement, and gravitational collection. We show that Brownian motion and Brownian diffusion enhancement dominate gravitational collection. The impact of coagulation is significant during the storm, with coagulation rates increased by a factor of 10 compared to non-storm conditions. The effective particle radius can be increased by a factor of 2 due to coagulation, leading to a 20K colder atmosphere above 30 km altitude. Overall, our parameterization improves the representation of the decay phase of the storm relative to observations. The process remains significant outside the storm period if large numbers of submicron-sized particles are involved. It may be possible, in GCMs, to lift larger amounts of submicron-sized particles from the surface without excess dust buildup in the atmosphere, thus improving the agreement with some of the observations without diverging from the observed column opacities.