论文标题
部分可观测时空混沌系统的无模型预测
$I-$Love$-C$ relation for an anisotropic neutron star
论文作者
论文摘要
已经提出了最常见的假设之一,即恒星内部的压力本质上是各向同性的。但是,压力本质上是局部各向异性的,这是一个更现实的情况。在这项研究中,我们研究了具有标量压力各向异性模型的各向异性中子星的某些特性。使用相对论的均值场模型方程(EOSS)在恒星中测试了不同的完美流体条件(EOSS)。质量($ M $),半径($ r $),紧凑度($ c $),爱情号码($ k_2 $),无量纲潮汐变形($λ$)和惯性矩($ i $)等各向异性中子星形属性。如上所述,数量的大小增加(减小),除了$ k_2 $和$λ$之外,各向异性的正值(负)值。通用关系$ i- $ love $ -c $是通过从相对论到非权威主义案例的近58个EOSS跨度计算的。我们观察到,当我们包括各向异性时,它们之间的关系会变得较弱。借助GW170817潮汐变形限制限制和从不同方法的半径约束,我们发现,如果使用BL模型,各向异性参数小于1.0。使用GW170817给出的通用关系和潮汐变形性,我们对规范半径进行了理论限制,$ r_ {1.4} = 10.74 _ { - 1.36}^{+1.84}^{+1.84} $ km,以及Inertia的时刻1.77 _ { - 0.09}^{+0.17} \ times10^{45} $ g cm $^2 $,以及90 \%的各向同性星的置信度限制。同样,对于具有$λ_{\ rm bl} = 1.0 $的各向异性星,值为$ r_ {1.4} = 11.74 _ { - 1.54}^{+2.11} $ km,$ i_ {1.4} cm $^2 $。
One of the most common assumptions has been made that the pressure inside the star is isotropic in nature. However, the pressure is locally anisotropic in nature which is a more realistic case. In this study, we investigate certain properties of anisotropic neutron stars with the scalar pressure anisotropy model. Different perfect fluid conditions are tested within the star with the relativistic mean-field model equation of states (EOSs). The anisotropic neutron star properties such as mass ($M$), radius ($R$), compactness ($C$), Love number ($k_2$), dimensionless tidal deformability ($Λ$), and the moment of inertia ($I$) are calculated. The magnitude of the quantities as mentioned above increases (decreases) with the positive (negative) value of anisotropy except $k_2$ and $Λ$. The Universal relation $I-$Love$-C$ is calculated with almost 58 EOSs spans from relativistic to non-relativistic cases. We observed that the relations between them get weaker when we include anisotropicity. With the help of the GW170817 tidal deformability limit and radii constraints from different approaches, we find that the anisotropic parameter is less than 1.0 if one uses the BL model. Using the universal relation and the tidal deformability bound given by the GW170817, we put a theoretical limit for the canonical radius, $R_{1.4}=10.74_{-1.36}^{+1.84}$ km, and the moment of inertia, $I_{1.4} = 1.77_{-0.09}^{+0.17}\times10^{45}$ g cm$^2$ with 90\% confidence limit for isotropic stars. Similarly, for anisotropic stars with $λ_{\rm BL}=1.0$, the values are $R_{1.4}=11.74_{-1.54}^{+2.11}$ km, $I_{1.4} = 2.40_{-0.08}^{+0.17} \times10^{45}$ g cm$^2$ respectively.