论文标题
发挥情感:情感驱动的强化学习
Play with Emotion: Affect-Driven Reinforcement Learning
论文作者
论文摘要
本文通过将影响建模的任务视为强化学习(RL)过程,引入了范式转变。根据拟议的范式,RL代理通过尝试通过其环境(即上下文)来最大化一组奖励(即行为和情感模式)来学习政策(即情感互动)。我们的假设是,RL是交织的有效范式,影响引起和表现与行为和情感演示。重要的是,我们关于达马西奥的躯体标记假设的第二个假设建设 - 情感可以成为决策的促进者。我们通过训练Go-Blend Agents来对人类的唤醒和行为进行模型来检验赛车游戏中的假设; Go-Blend是Go-explore算法的修改版本,该版本最近在硬探索任务中展示了最高性能。我们首先改变了基于唤醒的奖励功能,并观察可以根据指定的奖励有效地显示情感和行为模式的调色板。然后,我们使用基于唤醒的状态选择机制,以使Go-Blend探索的策略偏差。我们的发现表明,Go-Blend不仅是有效的影响建模范式,而且更重要的是,情感驱动的RL可以改善探索并产生更高的性能代理,从而验证了Damasio在游戏领域中的假设。
This paper introduces a paradigm shift by viewing the task of affect modeling as a reinforcement learning (RL) process. According to the proposed paradigm, RL agents learn a policy (i.e. affective interaction) by attempting to maximize a set of rewards (i.e. behavioral and affective patterns) via their experience with their environment (i.e. context). Our hypothesis is that RL is an effective paradigm for interweaving affect elicitation and manifestation with behavioral and affective demonstrations. Importantly, our second hypothesis-building on Damasio's somatic marker hypothesis-is that emotion can be the facilitator of decision-making. We test our hypotheses in a racing game by training Go-Blend agents to model human demonstrations of arousal and behavior; Go-Blend is a modified version of the Go-Explore algorithm which has recently showcased supreme performance in hard exploration tasks. We first vary the arousal-based reward function and observe agents that can effectively display a palette of affect and behavioral patterns according to the specified reward. Then we use arousal-based state selection mechanisms in order to bias the strategies that Go-Blend explores. Our findings suggest that Go-Blend not only is an efficient affect modeling paradigm but, more importantly, affect-driven RL improves exploration and yields higher performing agents, validating Damasio's hypothesis in the domain of games.