论文标题

长度函数在复杂谎言组的亚组上成倍扭曲

Length functions exponentially distorted on subgroups of complex Lie groups

论文作者

Aristov, Oleg

论文摘要

我们引入了一个长度函数的概念,该函数在局部紧凑的组的(紧凑生成)亚组上呈指数扭曲。我们证明,对于连接的线性复杂谎言组,在指数和nilpotent自由基之间的正常积分子组上有一个最大长度函数的最大等效类别。此外,该类别的功能接受了与作者先前有关单词长度函数的渐近分解,即在指数自由基的情况下[J.谎言理论29:4,1045--1070,2019]。在一般情况下,我们使用通过塑形同构构建的辅助长度函数来banach pi-algebras。

We introduce a notion of a length function exponentially distorted on a (compactly generated) subgroup of a locally compact group. We prove that for a connected linear complex Lie group there is a maximum equivalence class of length functions exponentially distorted on a normal integral subgroup lying between the exponential and nilpotent radicals. Moreover, a function in this class admits an asymptotic decomposition similar to that previously found by the author for word length functions, i.e., in the case of exponential radical [J. Lie Theory 29:4, 1045--1070, 2019]. In the general case we use auxiliary length functions constructed via holomorphic homomorphisms to Banach PI-algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源