论文标题
使用状态空间模型同时解决大规模MEG/EEG来源本地化和功能连接问题
Solving large-scale MEG/EEG source localization and functional connectivity problems simultaneously using state-space models
论文作者
论文摘要
州空间模型在各个研究学科中广泛使用,以研究未观察到的动态。传统的估计技术,例如Kalman过滤和期望最大化,提供了有价值的见解,但在大规模分析中产生了高度的计算成本。稀疏的逆协方差估计器可以减轻这些成本,但要牺牲强化稀疏性和增加估计偏差之间的权衡,因此需要仔细评估低信噪比(SNR)情况。为了应对这些挑战,我们提出了一个三倍的解决方案:1)引入多个惩罚状态空间(MPSS)模型,以利用数据驱动的正则化; 2)开发源自向后传播,梯度下降和交替的最小二乘以求解MPSS模型的新型算法; 3)提出用于评估正则化参数的K折交叉验证扩展。我们通过在不同的SNR条件下通过较低和更复杂的模拟来验证该MPSS正则化框架,包括大规模的合成磁盘和电脑电图(MEG/EEG)数据分析。此外,我们还将MPSS模型同时解决与实际事件相关的MEG/EEG数据的大脑源定位和功能连接问题,并涵盖了皮质表面上数千个来源。提出的方法克服了现有方法的局限性,例如对小规模和利益分析的限制。因此,它可以对认知大脑功能进行更准确,更详细的探索。
State-space models are widely employed across various research disciplines to study unobserved dynamics. Conventional estimation techniques, such as Kalman filtering and expectation maximisation, offer valuable insights but incur high computational costs in large-scale analyses. Sparse inverse covariance estimators can mitigate these costs, but at the expense of a trade-off between enforced sparsity and increased estimation bias, necessitating careful assessment in low signal-to-noise ratio (SNR) situations. To address these challenges, we propose a three-fold solution: 1) Introducing multiple penalised state-space (MPSS) models that leverage data-driven regularisation; 2) Developing novel algorithms derived from backpropagation, gradient descent, and alternating least squares to solve MPSS models; 3) Presenting a K-fold cross-validation extension for evaluating regularisation parameters. We validate this MPSS regularisation framework through lower and more complex simulations under varying SNR conditions, including a large-scale synthetic magneto- and electro-encephalography (MEG/EEG) data analysis. In addition, we apply MPSS models to concurrently solve brain source localisation and functional connectivity problems for real event-related MEG/EEG data, encompassing thousands of sources on the cortical surface. The proposed methodology overcomes the limitations of existing approaches, such as constraints to small-scale and region-of-interest analyses. Thus, it may enable a more accurate and detailed exploration of cognitive brain functions.