论文标题
损耗:使用增强学习攻击静态硬件特洛伊木马检测技术
ATTRITION: Attacking Static Hardware Trojan Detection Techniques Using Reinforcement Learning
论文作者
论文摘要
在集成电路的制造过程中插入的隐形硬件木马(HTS)可以绕过关键基础架构的安全性。尽管研究人员提出了许多检测HT的技术,但存在几个局限性,包括:(i)成功率低,(ii)高算法复杂性,以及(iii)大量的测试模式。此外,先前检测技术最相关的缺点源于不正确的评估方法,即,他们假设对手随机插入HTS。这种不适当的对抗性假设使检测技术能够声称高HT检测准确性,从而导致“错误的安全感”。不幸的是,据我们所知,尽管关于检测在制造过程中插入的HTS的研究多了十年,但仍未进行对HT检测技术进行系统评估的共同努力。 在本文中,我们扮演着现实的对手的作用,并通过使用加固学习(RL)开发自动化,可扩展和实用的攻击框架(RL)来质疑HT检测技术的功效。损耗逃避了两个HT检测类别的八种检测技术,展示了其不可知论行为。与随机插入的HTS相比,消耗量达到$ 47 \ times $ $ $ $ $ $ $ $ $ $ $ 47 \ times $ $ 47。我们通过评估从广泛使用的学术套房到大型设计(例如开源MIPS和MOR1KX处理器)到AES和AES和GPS模块等较大的设计,从而证明了Deprition逃避检测技术的能力。此外,我们通过两个案例研究(特权升级和杀死开关)对MOR1KX处理器展示了损耗生成的HTS的影响。我们设想我们的工作以及发布的HT基准和模型,促进了更好的HT检测技术的发展。
Stealthy hardware Trojans (HTs) inserted during the fabrication of integrated circuits can bypass the security of critical infrastructures. Although researchers have proposed many techniques to detect HTs, several limitations exist, including: (i) a low success rate, (ii) high algorithmic complexity, and (iii) a large number of test patterns. Furthermore, the most pertinent drawback of prior detection techniques stems from an incorrect evaluation methodology, i.e., they assume that an adversary inserts HTs randomly. Such inappropriate adversarial assumptions enable detection techniques to claim high HT detection accuracy, leading to a "false sense of security." Unfortunately, to the best of our knowledge, despite more than a decade of research on detecting HTs inserted during fabrication, there have been no concerted efforts to perform a systematic evaluation of HT detection techniques. In this paper, we play the role of a realistic adversary and question the efficacy of HT detection techniques by developing an automated, scalable, and practical attack framework, ATTRITION, using reinforcement learning (RL). ATTRITION evades eight detection techniques across two HT detection categories, showcasing its agnostic behavior. ATTRITION achieves average attack success rates of $47\times$ and $211\times$ compared to randomly inserted HTs against state-of-the-art HT detection techniques. We demonstrate ATTRITION's ability to evade detection techniques by evaluating designs ranging from the widely-used academic suites to larger designs such as the open-source MIPS and mor1kx processors to AES and a GPS module. Additionally, we showcase the impact of ATTRITION-generated HTs through two case studies (privilege escalation and kill switch) on the mor1kx processor. We envision that our work, along with our released HT benchmarks and models, fosters the development of better HT detection techniques.