论文标题
通常改变的, - 弹性,截断和解释的回归,并应用于堆积和渗入数据
Generally-Altered, -Inflated, -Truncated and -Deflated Regression, With Application to Heaped and Seeped Data
论文作者
论文摘要
在现代回归分析中,诸如零膨胀和零变化的泊松和零截断的二项式的模型在现代回归分析中已经建立了良好的建立。我们提出了一个超级模型,该模型在给定1或2-参数父母(基本)分布的情况下,共同和最大化计数的变化,通胀,截断和放气。可以容纳七个特殊价值类型的七个脱节集,因为除截短以外的所有截断都有参数和非参数变体。一些亮点包括:(i)混合物分布超过柔性,例如,最多七个模式; (ii)可以使用负二项式(NB)母体来处理 - 平等和过度分散,并以一种新型的通常截断性扩张方法处理的不足; (iii)可以根据四个操作员进行整体研究; (iv)一个重要的应用程序:从回顾性自我报告的调查中堆积和渗入的数据很容易处理,例如,几乎位于任何地方的尖峰和倾角; (v)虽然通常改变的回归解释了为什么在那里进行观察,但通常充实的回归解释了为什么它们过度过度,而普遍泄漏的回归解释了为什么观察不存在。 (vi)VGAM R软件包实施了基于Fisher评分和多项式Logit模型的方法(Poisson,NB,Zeta和对数父母。
Models such as the zero-inflated and zero-altered Poisson and zero-truncated binomial are well-established in modern regression analysis. We propose a super model that jointly and maximally unifies alteration, inflation, truncation and deflation for counts, given a 1- or 2-parameter parent (base) distribution. Seven disjoint sets of special value types are accommodated because all but truncation have parametric and nonparametric variants. Some highlights include: (i) the mixture distribution is exceeding flexible, e.g., up to seven modes; (ii) under-, equi- and over-dispersion can be handled using a negative binomial (NB) parent, with underdispersion handled by a novel Generally-Truncated-Expansion method; (iii) overdispersion can be studied holistically in terms of the four operators; (iv) an important application: heaped and seeped data from retrospective self-reported surveys are readily handled, e.g., spikes and dips which are located virtually anywhere; (v) while generally-altered regression explains why observations are there, generally-inflated regression accounts for why they are there in excess, and generally-deflated regression explains why observations are not there; (vi) the VGAM R package implements the methodology based on Fisher scoring and multinomial logit model (Poisson, NB, zeta and logarithmic parents are implemented.) The GAITD-NB has potential to become the Swiss army knife of count distributions.