论文标题
潜在信号模型:学习信号演化的紧凑表示,以改善时间分辨,多对比度MRI
Latent Signal Models: Learning Compact Representations of Signal Evolution for Improved Time-Resolved, Multi-contrast MRI
论文作者
论文摘要
目的:对模拟信号演化的训练自动编码器,并将解码器插入向前模型可以通过与线性子空间相比,通过更紧凑的基于BLOCH方程的信号表示来改善重建。 方法:基于基于模型的非线性和线性子空间技术,可以重建信号动力学,我们在模拟信号演化的字典上训练自动编码器,以学习更多紧凑的,非线性的,潜在的表示。所提出的潜在信号模型框架将自动编码器的解码器部分插入到正向模型中,并直接重建潜在表示。潜在信号模型实质上是通过用于模拟信号的Bloch方程的快速和可行分化的代理。这项工作在T2避免,梯度回声EPTI和Mprage-Shuffling的背景下进行实验。我们比较与线性子空间相比,自动编码器如何有效自动编码器表示信号演变。然后,模拟和体内实验然后通过将解码器插入向前模型来评估降低自由度是否可以改善与子空间约束相比的重建。 结果:具有一个真实潜在变量的自动编码器代表FSE,EPTI和MPRAGE信号演化以及以四个基矢量为特征的线性子空间。在模拟/体内T2避免和体内EPTI实验中,所提出的框架可实现一致的定量NRMSE和对线性方法的定性改进。从定性评估中,提出的方法在Mprage洗牌实验中产生的图像减少了,并且噪声放大。 结论:直接求解信号演化的非线性潜在表示可以通过降低的自由度改善时间分辨的MRI重建。
Purpose: Training auto-encoders on simulated signal evolution and inserting the decoder into the forward model improves reconstructions through more compact, Bloch-equation-based representations of signal in comparison to linear subspaces. Methods: Building on model-based nonlinear and linear subspace techniques that enable reconstruction of signal dynamics, we train auto-encoders on dictionaries of simulated signal evolution to learn more compact, non-linear, latent representations. The proposed Latent Signal Model framework inserts the decoder portion of the auto-encoder into the forward model and directly reconstructs the latent representation. Latent Signal Models essentially serve as a proxy for fast and feasible differentiation through the Bloch-equations used to simulate signal. This work performs experiments in the context of T2-shuffling, gradient echo EPTI, and MPRAGE-shuffling. We compare how efficiently auto-encoders represent signal evolution in comparison to linear subspaces. Simulation and in-vivo experiments then evaluate if reducing degrees of freedom by inserting the decoder into the forward model improves reconstructions in comparison to subspace constraints. Results: An auto-encoder with one real latent variable represents FSE, EPTI, and MPRAGE signal evolution as well as linear subspaces characterized by four basis vectors. In simulated/in-vivo T2-shuffling and in-vivo EPTI experiments, the proposed framework achieves consistent quantitative NRMSE and qualitative improvement over linear approaches. From qualitative evaluation, the proposed approach yields images with reduced blurring and noise amplification in MPRAGE shuffling experiments. Conclusion: Directly solving for non-linear latent representations of signal evolution improves time-resolved MRI reconstructions through reduced degrees of freedom.