论文标题

使用横截面成像和临床数据对衰老心脏的生成建模

Generative Modelling of the Ageing Heart with Cross-Sectional Imaging and Clinical Data

论文作者

Qiao, Mengyun, Basaran, Berke Doga, Qiu, Huaqi, Wang, Shuo, Guo, Yi, Wang, Yuanyuan, Matthews, Paul M., Rueckert, Daniel, Bai, Wenjia

论文摘要

心血管疾病是全球死亡的主要原因,是一种与年龄有关的疾病。了解衰老期间心脏的形态和功能变化是一个关键的科学问题,其答案将有助于我们定义心血管疾病的重要危险因素并监测疾病进展。在这项工作中,我们提出了一种新型的条件生成模型,以描述衰老过程中心脏3D解剖学的变化。提出的模型是灵活的,可以将多个临床因素(例如年龄,性别)整合到生成过程中。我们在心脏解剖学的大规模横截面数据集上训练该模型,并在横截面和纵向数据集上进行评估。该模型在预测衰老心脏的纵向演化和对其数据分布进行建模方面表现出了出色的表现。这些代码可在https://github.com/mengyunq/ageheart上找到。

Cardiovascular disease, the leading cause of death globally, is an age-related disease. Understanding the morphological and functional changes of the heart during ageing is a key scientific question, the answer to which will help us define important risk factors of cardiovascular disease and monitor disease progression. In this work, we propose a novel conditional generative model to describe the changes of 3D anatomy of the heart during ageing. The proposed model is flexible and allows integration of multiple clinical factors (e.g. age, gender) into the generating process. We train the model on a large-scale cross-sectional dataset of cardiac anatomies and evaluate on both cross-sectional and longitudinal datasets. The model demonstrates excellent performance in predicting the longitudinal evolution of the ageing heart and modelling its data distribution. The codes are available at https://github.com/MengyunQ/AgeHeart.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源