论文标题
在非结构化环境中的自动驾驶汽车的有效空间轨迹规划师
An Efficient Spatial-Temporal Trajectory Planner for Autonomous Vehicles in Unstructured Environments
论文作者
论文摘要
作为自动驾驶系统的核心部分,运动计划已受到学术界和行业的广泛关注。然而,非虚构动态挑战了能够空间连接优化的实时轨迹计划,尤其是在存在非结构化环境和动态障碍的情况下。为了弥合差距,我们提出了一种实时轨迹优化方法,该方法可以在任意环境约束下生成高质量的全身轨迹。通过利用类似汽车的机器人的差异平坦性特性,我们简化了轨迹表示形式,并通过分析提出了计划问题,同时保持了非实体性动力学的可行性。此外,我们使用安全驾驶走廊来实现有效的障碍物,以实现未建模的障碍物和动态移动物体的签名距离近似。我们通过最先进的方法介绍了全面的基准测试,这证明了拟议方法在效率和轨迹质量方面的重要性。现实世界实验验证了我们算法的实用性。我们将为研究社区发布我们的代码
As a core part of autonomous driving systems, motion planning has received extensive attention from academia and industry. However, real-time trajectory planning capable of spatial-temporal joint optimization is challenged by nonholonomic dynamics, particularly in the presence of unstructured environments and dynamic obstacles. To bridge the gap, we propose a real-time trajectory optimization method that can generate a high-quality whole-body trajectory under arbitrary environmental constraints. By leveraging the differential flatness property of car-like robots, we simplify the trajectory representation and analytically formulate the planning problem while maintaining the feasibility of the nonholonomic dynamics. Moreover, we achieve efficient obstacle avoidance with a safe driving corridor for unmodelled obstacles and signed distance approximations for dynamic moving objects. We present comprehensive benchmarks with State-of-the-Art methods, demonstrating the significance of the proposed method in terms of efficiency and trajectory quality. Real-world experiments verify the practicality of our algorithm. We will release our codes for the research community