论文标题

在非结构化环境中的自动驾驶汽车的有效空间轨迹规划师

An Efficient Spatial-Temporal Trajectory Planner for Autonomous Vehicles in Unstructured Environments

论文作者

Han, Zhichao, Wu, Yuwei, Li, Tong, Zhang, Lu, Pei, Liuao, Xu, Long, Li, Chengyang, Ma, Changjia, Xu, Chao, Shen, Shaojie, Gao, Fei

论文摘要

作为自动驾驶系统的核心部分,运动计划已受到学术界和行业的广泛关注。然而,非虚构动态挑战了能够空间连接优化的实时轨迹计划,尤其是在存在非结构化环境和动态障碍的情况下。为了弥合差距,我们提出了一种实时轨迹优化方法,该方法可以在任意环境约束下生成高质量的全身轨迹。通过利用类似汽车的机器人的差异平坦性特性,我们简化了轨迹表示形式,并通过分析提出了计划问题,同时保持了非实体性动力学的可行性。此外,我们使用安全驾驶走廊来实现有效的障碍物,以实现未建模的障碍物和动态移动物体的签名距离近似。我们通过最先进的方法介绍了全面的基准测试,这证明了拟议方法在效率和轨迹质量方面的重要性。现实世界实验验证了我们算法的实用性。我们将为研究社区发布我们的代码

As a core part of autonomous driving systems, motion planning has received extensive attention from academia and industry. However, real-time trajectory planning capable of spatial-temporal joint optimization is challenged by nonholonomic dynamics, particularly in the presence of unstructured environments and dynamic obstacles. To bridge the gap, we propose a real-time trajectory optimization method that can generate a high-quality whole-body trajectory under arbitrary environmental constraints. By leveraging the differential flatness property of car-like robots, we simplify the trajectory representation and analytically formulate the planning problem while maintaining the feasibility of the nonholonomic dynamics. Moreover, we achieve efficient obstacle avoidance with a safe driving corridor for unmodelled obstacles and signed distance approximations for dynamic moving objects. We present comprehensive benchmarks with State-of-the-Art methods, demonstrating the significance of the proposed method in terms of efficiency and trajectory quality. Real-world experiments verify the practicality of our algorithm. We will release our codes for the research community

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源