论文标题

非理性措施和Flint-Hills系列的界限

Bounds on Irrationality Measures and the Flint-Hills Series

论文作者

Meiburg, Alex

论文摘要

未知是否Flint-Hills系列$ \ sum_ {n = 1}^\ infty \ frac {1} {n^3 \ sin^2(n)} $收敛。 Alekseyev(2011)将这个问题与$π$的非理性度量相关联,即$μ(π)> \ frac {5} {2} $将暗示Flint-Hills系列的分歧。在本文中,我们建立了一个近乎完整的匡威,那就是$μ(π)<\ frac {5} {2} $将暗示收敛。关于密切合理近似密度的相关结果可能具有独立的关注。简要解决了$μ(π)= \ frac {5} {2} $的剩余边缘情况,并证明很难解决。

It is unknown whether the Flint-Hills series $\sum_{n=1}^\infty \frac{1}{n^3\sin^2(n)}$ converges. Alekseyev (2011) connected this question to the irrationality measure of $π$, that $μ(π) > \frac{5}{2}$ would imply divergence of the Flint-Hills series. In this paper we established a near-complete converse, that $μ(π) < \frac{5}{2}$ would imply convergence. The associated results on the density of close rational approximations may be of independent interest. The remaining edge case of $μ(π) = \frac{5}{2}$ is briefly addressed, with evidence that it would be hard to resolve.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源