论文标题
十亿用户客户寿命价值预测:Kuaishou的工业规模解决方案
Billion-user Customer Lifetime Value Prediction: An Industrial-scale Solution from Kuaishou
论文作者
论文摘要
客户寿命价值(LTV)是单个用户可以带给企业的预期总收入。它被广泛用于各种业务方案,以在获取新客户时做出运营决策。由于其复杂且可变的数据分布,建模LTV是一个具有挑战性的问题。现有方法要么直接从后验特征分布中学习,要么利用统计模型,这些模型对先前的分布做出了强有力的假设,这两者都无法捕获这些可变分布。在本文中,我们提出了一套完整的工业级LTV建模解决方案。具体而言,我们引入了订单依赖性单调网络(ODMN),该订单依赖性网络(ODMN)对不同时间跨度LTV之间的有序依赖关系进行建模,从而极大地改善了模型性能。我们进一步介绍了基于分裂和互动的想法的多分销多专家(MDME)模块,该模块将严重不平衡的分布建模问题转化为一系列相对平衡的亚分布建模问题,因此大大降低了建模的复杂性。此外,引入了一种新的评估度量互助Gini,以更好地测量基于洛伦兹曲线的估计值和地面真相标签之间的分布差。 ODMN框架已成功部署在Kuaishou的许多业务场景中,并取得了出色的性能。与最新的基线相比,现实世界中的广泛实验证明了所提出的方法的优越性,包括ZILN和两阶段的Xgboost模型。
Customer Life Time Value (LTV) is the expected total revenue that a single user can bring to a business. It is widely used in a variety of business scenarios to make operational decisions when acquiring new customers. Modeling LTV is a challenging problem, due to its complex and mutable data distribution. Existing approaches either directly learn from posterior feature distributions or leverage statistical models that make strong assumption on prior distributions, both of which fail to capture those mutable distributions. In this paper, we propose a complete set of industrial-level LTV modeling solutions. Specifically, we introduce an Order Dependency Monotonic Network (ODMN) that models the ordered dependencies between LTVs of different time spans, which greatly improves model performance. We further introduce a Multi Distribution Multi Experts (MDME) module based on the Divide-and-Conquer idea, which transforms the severely imbalanced distribution modeling problem into a series of relatively balanced sub-distribution modeling problems hence greatly reduces the modeling complexity. In addition, a novel evaluation metric Mutual Gini is introduced to better measure the distribution difference between the estimated value and the ground-truth label based on the Lorenz Curve. The ODMN framework has been successfully deployed in many business scenarios of Kuaishou, and achieved great performance. Extensive experiments on real-world industrial data demonstrate the superiority of the proposed methods compared to state-of-the-art baselines including ZILN and Two-Stage XGBoost models.