论文标题
网络催化:n $ _2 $与弦氏催化剂与强大金属互动的解离
Cyber Catalysis: N$_2$ Dissociation over Ruthenium Catalyst with Strong Metal-Support Interaction
论文作者
论文摘要
催化信息学正在不断发展,并且已经实现了计算设计和高通量实验的数据挖掘,分子模拟和自动化的重大进展。然而,迄今为止,揭示了网络空间中复杂支持的纳米颗粒催化剂机制的努力已被证明是不成功的。这项研究通过在受支持的RU纳米粒子上探索N $ _2 $解离,以使用通用神经网络潜力来填补这一空白。我们计算了200种催化剂配置,考虑了支撑和强大的金属支持相互作用(SMSI),最终对各种N $ _2 $吸附状态进行了15,600次计算。通过实验性IR谱数据成功验证了我们的结果后,我们阐明了SMSI表面高活性背后的密钥n $ _2 $解离途径,并披露了在650°C时降低的催化剂的最大活性。我们的方法非常适用于其他复杂系统,我们认为这是朝着数字化催化研究的数字化转型的关键第一步。
Catalysis informatics is constantly developing, and significant advances in data mining, molecular simulation, and automation for computational design and high-throughput experimentation have been achieved. However, efforts to reveal the mechanisms of complex supported nanoparticle catalysts in cyberspace have proven to be unsuccessful thus far. This study fills this gap by exploring N$_2$ dissociation on a supported Ru nanoparticle as an example using a universal neural network potential. We calculated 200 catalyst configurations considering the reduction of the support and strong metal-support interaction (SMSI), eventually performing 15,600 calculations for various N$_2$ adsorption states. After successfully validating our results with experimental IR spectral data, we clarified key N$_2$ dissociation pathways behind the high activity of the SMSI surface and disclosed the maximum activity of catalysts reduced at 650 °C. Our method is well applicable to other complex systems, and we believe it represents a key first step toward the digital transformation of investigations on heterogeneous catalysis.