论文标题
罗宾热内核对流形的比较
Robin heat kernel comparison on manifolds
论文作者
论文摘要
我们研究了具有罗宾边界条件的热核,并证明了地球球上热核和最小的亚策略的比较定理。 We also prove an eigenvalue comparison theorem for the first Robin eigenvalues on minimal submanifolds. This generalizes corresponding results for the Dirichlet and Neumann heat kernels.
We investigate the heat kernel with Robin boundary condition and prove comparison theorems for heat kernel on geodesic balls and on minimal submanifolds. We also prove an eigenvalue comparison theorem for the first Robin eigenvalues on minimal submanifolds. This generalizes corresponding results for the Dirichlet and Neumann heat kernels.