论文标题
部分可观测时空混沌系统的无模型预测
A Hamiltonian approach to small time local attainability of manifolds for nonlinear control systems
论文作者
论文摘要
本文开发了一种新的方法,可以使用任何维度的平滑流形的局部可实现,可能具有边界,并证明最小时间函数的Hölder连续性。我们通过使用将受控矢量场的衍生物和在局部定义目标的功能结合的高阶哈密顿人使用高阶哈密顿人的明确条件。为了使点的可控性,我们的足够条件扩展了对称或对照仿射系统的一些经典已知的结果,而是使用Lie代数,但是对于更高维度的目标,我们的方法和结果是新的。我们发现我们足够的高阶条件明确,易于使用,用于具有曲率和一般控制系统的目标。
This paper develops a new approach to small time local attainability of smooth manifolds of any dimension, possibly with boundary and to prove Hölder continuity of the minimum time function. We give explicit pointwise conditions of any order by using higher order hamiltonians which combine derivatives of the controlled vector field and the functions that locally define the target. For the controllability of a point our sufficient conditions extend some classically known results for symmetric or control affine systems, using the Lie algebra instead, but for targets of higher dimension our approach and results are new. We find our sufficient higher order conditions explicit and easy to use for targets with curvature and general control systems.