论文标题
木星 - 苏特尔混沌激发
Terrestrial planet and asteroid belt formation by Jupiter-Saturn chaotic excitation
论文作者
论文摘要
陆地行星是由内部太阳系的原球磁盘中的小行星样物体积聚而形成的。先前的工作发现,形成小质量火星需要磁盘包含〜1.5 au以上的质量很小(即,磁盘质量集中在该边界内)。小行星带还具有有关如此狭窄磁盘的起源的关键信息。几种情况可能会产生狭窄的磁盘。但是,同时复制四个陆地行星,而内部太阳系特性仍然难以捉摸。在这里,我们发现,通过木星 - 苏星的近乎共鸣构型产生的磁盘对象的混乱激发会产生一个狭窄的磁盘,从而允许地球行星和小行星带的形成。我们的模拟表明,这种机制通常会在5-10 MYR时尺度上耗尽〜1.5 au的巨大磁盘。所得的陆地系统再现了当前的金星,地球和火星的轨道和质量。在〜0.8-0.9 au内添加一个内部区域磁盘分量,允许几个陆地系统同时形成四个陆地行星的类似物。我们的陆地系统还经常满足其他限制:中位数〜30-55 MYR发生后发生的月球形成巨型撞击,以2 au内形成的磁盘对象代表的后期撞击器,以及在地球地层的第一个10-20 Myr中有效的水输送。最后,我们的模型小行星带解释了小行星带的轨道结构,小质量和分类法(S-,C-和D/P型)。
The terrestrial planets formed by accretion of asteroid-like objects within the inner solar system's protoplanetary disk. Previous works have found that forming a small-mass Mars requires the disk to contain little mass beyond ~1.5 au (i.e., the disk mass was concentrated within this boundary). The asteroid belt also holds crucial information about the origin of such a narrow disk. Several scenarios may produce a narrow disk. However, simultaneously replicating the four terrestrial planets and the inner solar system properties remains elusive. Here, we found that chaotic excitation of disk objects generated by a near-resonant configuration of Jupiter-Saturn can create a narrow disk, allowing the formation of the terrestrial planets and the asteroid belt. Our simulations showed that this mechanism could typically deplete a massive disk beyond ~1.5 au on a 5-10 Myr timescale. The resulting terrestrial systems reproduced the current orbits and masses of Venus, Earth and Mars. Adding an inner region disk component within ~0.8-0.9 au allowed several terrestrial systems to simultaneously form analogues of the four terrestrial planets. Our terrestrial systems also frequently satisfied additional constraints: Moon-forming giant impacts occurring after a median ~30-55 Myr, late impactors represented by disk objects formed within 2 au, and effective water delivery during the first 10-20 Myr of Earth's formation. Finally, our model asteroid belt explained the asteroid belt's orbital structure, small mass and taxonomy (S-, C- and D/P-types).