论文标题

重建大规模温度概况左右$ z \ sim 6 $ quasars

Reconstructing Large-scale Temperature Profiles around $z\sim 6$ Quasars

论文作者

Chen, Huanqing, Croft, Rupert, Gnedin, Nickolay Y.

论文摘要

高红移类星体将HEII电离纳入周围的HEIII,在此过程中加热IgM并创建较大的温度区域。在这项工作中,我们演示了一种基于卷积神经网络(CNN)的方法,以恢复$ t_0 $的空间曲线,即在类星体接近区中的平均宇宙密度的温度。我们使用来自计算机模拟的宇宙电离绘制的合成光谱来训练神经网络。我们发现,在理想化的观察不确定性的情况下,简单的CNN能够以$ \ 1400 $ K的精度恢复温度曲线。我们测试了CNN的鲁棒性,并发现它与类星体宿主光环质量,类星体连续体和电离磁通的不确定性具有鲁棒性。我们还发现,CNN在类星体光谱的硬度方面具有良好的一般性。饱和像素在准确性方面提出了更大的问题,并可能在接近区域的外部将准确性降低到$ 1700 $ K。使用我们的方法,可以区分气体是由类星体创建的HEIII区域内还是外部。由于HEIII区域的大小与总的类星体寿命密切相关,因此该方法在$ \ sim $ myr timesscales上限制了类星体寿命方面具有很大的潜力。

High-redshift quasars ionize HeII into HeIII around them, heating the IGM in the process and creating large regions with elevated temperature. In this work, we demonstrate a method based on a convolutional neural network (CNN) to recover the spatial profile for $T_0$, the temperature at the mean cosmic density, in quasar proximity zones. We train the neural network with synthetic spectra drawn from a Cosmic Reionization on Computers simulation. We discover that the simple CNN is able to recover the temperature profile with an accuracy of $\approx 1400$ K in an idealized case of negligible observational uncertainties. We test the robustness of the CNN and discover that it is robust against the uncertainties in quasar host halo mass, quasar continuum and ionizing flux. We also find that the CNN has good generality with regard to the hardness of quasar spectra. Saturated pixels pose a bigger problem for accuracy and may downgrade the accuracy to $1700$ K in the outer parts of the proximity zones. Using our method, one could distinguish whether gas is inside or outside the HeIII region created by the quasar. Because the size of the HeIII region is closely related to the total quasar lifetime, this method has great potential in constraining the quasar lifetime on $\sim $Myr timescales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源